Uncertainty analysis of hydrological model parameters based on the bootstrap method: A case study of the SWAT model applied to the Dongliao River Watershed, Jilin Province, Northeastern China

2013 ◽  
Vol 57 (1) ◽  
pp. 219-229 ◽  
Author(s):  
Zheng Zhang ◽  
WenXi Lu ◽  
HaiBo Chu ◽  
WeiGuo Cheng ◽  
Ying Zhao
2016 ◽  
Vol 43 (12) ◽  
pp. 1062-1074 ◽  
Author(s):  
Arpana Rani Datta ◽  
Tirupati Bolisetti

This paper has developed an input error model to account for input uncertainty, and applied the rainfall multiplier approaches to the calibration and uncertainty analysis of Soil and Water Assessment Tool (SWAT), a spatially-distributed hydrological model. The developed input error model has introduced the season-dependent rainfall multipliers to the Bayesian framework and reduced the dimension of the posterior probability density function. The method is applied to a watershed located in Southwestern Ontario, Canada. The results of the developed method are compared with two other methods. The SWAT model parameters and the input error model parameters are jointly inferred by a Markov chain Monte Carlo sampler. The results show the measured precipitation data overestimates the true precipitation values for the study area. The uncertainty in model prediction is underestimated for high flows and overestimated for low flows. There is no significant change in the estimation of parameter uncertainty and streamflow prediction uncertainty in the developed method from those in the other methods. The study emphasizes that the rainfall multiplier approaches are applicable to spatially-distributed hydrological modelling for accounting of input uncertainty.


2013 ◽  
Vol 10 (4) ◽  
pp. 4951-5011 ◽  
Author(s):  
H. Sellami ◽  
I. La Jeunesse ◽  
S. Benabdallah ◽  
N. Baghdadi ◽  
M. Vanclooster

Abstract. In this study a method for propagating the hydrological model uncertainty in discharge predictions of ungauged Mediterranean catchments using a model parameter regionalization approach is presented. The method is developed and tested for the Thau catchment located in southern France using the SWAT hydrological model. Regionalization of model parameters based on physical similarity measured between gauged and ungauged catchments attributes is a popular methodology for discharge prediction in ungauged basins, but it is often confronted with an arbitrary criterion for selecting the "behavioral" model parameters sets (Mps) at the gauged catchment. A more objective method is provided in this paper where the transferrable Mps are selected based on the similarity between the donor and the receptor catchments. In addition, the method allows propagating the modeling uncertainty while transferring the Mps to the ungauged catchments. Results indicate that physically similar catchments located within the same geographic and climatic region may exhibit similar hydrological behavior and can also be affected by similar model prediction uncertainty. Furthermore, the results suggest that model prediction uncertainty at the ungauged catchment increases as the dissimilarity between the donor and the receptor catchments increases. The methodology presented in this paper can be replicated and used in regionalization of any hydrological model parameters for estimating streamflow at ungauged catchment.


2014 ◽  
Vol 18 (6) ◽  
pp. 2393-2413 ◽  
Author(s):  
H. Sellami ◽  
I. La Jeunesse ◽  
S. Benabdallah ◽  
N. Baghdadi ◽  
M. Vanclooster

Abstract. In this study a method for propagating the hydrological model uncertainty in discharge predictions of ungauged Mediterranean catchments using a model parameter regionalization approach is presented. The method is developed and tested for the Thau catchment located in Southern France using the SWAT hydrological model. Regionalization of model parameters, based on physical similarity measured between gauged and ungauged catchment attributes, is a popular methodology for discharge prediction in ungauged basins, but it is often confronted with an arbitrary criterion for selecting the "behavioral" model parameter sets (Mps) at the gauged catchment. A more objective method is provided in this paper where the transferrable Mps are selected based on the similarity between the donor and the receptor catchments. In addition, the method allows propagating the modeling uncertainty while transferring the Mps to the ungauged catchments. Results indicate that physically similar catchments located within the same geographic and climatic region may exhibit similar hydrological behavior and can also be affected by similar model prediction uncertainty. Furthermore, the results suggest that model prediction uncertainty at the ungauged catchment increases as the dissimilarity between the donor and the receptor catchments increases. The methodology presented in this paper can be replicated and used in regionalization of any hydrological model parameters for estimating streamflow at ungauged catchment.


2004 ◽  
Vol 8 (5) ◽  
pp. 931-939 ◽  
Author(s):  
G. Heuvelmans ◽  
B. Muys ◽  
J. Feyen

Abstract. Operational applications of a hydrological model often require the prediction of stream flow in (future) time periods without stream flow observations or in ungauged catchments. Data for a case-specific optimisation of model parameters are not available for such applications, so parameters have to be derived from other catchments or time periods. It has been demonstrated that for applications of the SWAT in Northern Belgium, temporal transfers of the parameters have less influence than spatial transfers on the performance of the model. This study examines the spatial variation in parameter optima in more detail. The aim was to delineate zones wherein model parameters can be transferred without a significant loss of model performance. SWAT was calibrated for 25 catchments that are part of eight larger sub-basins of the Scheldt river basin. Two approaches are discussed for grouping these units in zones with a uniform set of parameters: a single parameter approach considering each parameter separately and a parameter set approach evaluating the parameterisation as a whole. For every catchment, the SWAT model was run with the local parameter optima, with the average parameter values for the entire study region (Flanders), with the zones delineated with the single parameter approach and with the zones obtained by the parameter set approach. Comparison of the model performances of these four parameterisation strategies indicates that both the single parameter and the parameter set zones lead to stream flow predictions that are more accurate than if the entire study region were treated as one single zone. On the other hand, the use of zonal average parameter values results in a considerably worse model fit compared to local parameter optima. Clustering of parameter sets gives a more accurate result than the single parameter approach and is, therefore, the preferred technique for use in the parameterisation of ungauged sub-catchments as part of the simulation of a large river basin. Keywords: hydrological model, regionalisation, parameterisation, spatial variability


2020 ◽  
Author(s):  
Cristina Prieto ◽  
Nataliya Le Vine ◽  
Dmitri Kavetski ◽  
César Álvarez ◽  
Raúl Medina

<p>Flow prediction in ungauged catchments is a major unresolved challenge in scientific and engineering hydrology. Meeting this challenge is made difficult by the uncertainty in the “regionalization” model used to transpose hydrological data (e.g., flow indices) from gauged to ungauged basins, and by the uncertainty in the hydrological model used to predict streamflow in the ungauged basin. This study combines recent advances in flow index selection, regionalization via machine learning methods, and a Bayesian inference framework. In addition, it proposes two new statistical metrics, “DistanceTest” and “InfoTest”, to assess the adequacy of a model before estimating its parameters. “DistanceTest” quantifies whether a model (hydrological or regionalization) is likely to reproduce the available hydrological information in a catchment. “InfoTest” is based on Bayes Factors and quantifies the information added by a model (hydrological or regionalization) over prior knowledge about the available hydrological information in a catchment). The proposed adequacy tests can be seen as a prerequisite for a model (hydrological or regionalization) being considered capable of providing meaningful and high quality flow time series predictions in ungauged catchments. If a model is found inadequate a priori and rejected, the modeler is spared the effort in estimating the model parameters, which can be a substantial saving.</p><p>The proposed regionalization approach is applied to 92 northern Spain catchments, with 16 catchments treated as ungauged. It is found that (1) a small number of PCs capture approximately 87% of variability in the flow indices, and (2) adequacy tests with respect to regionalized information are indicative of (but do not guarantee) the ability of a hydrological model to predict flow time series. The adequacy tests identify the regionalization of flow index PCs as adequate in 12 of 16 catchments but the hydrological model as adequate in only 1 of 16 catchments. In addition, the case study results suggest that the hydrological model is the main source of uncertainty in comparison to the regionalization model, and hence should receive the main priority in subsequent work at the case study catchments.</p>


2021 ◽  
Author(s):  
Wenjun Cai ◽  
Xueping Zhu ◽  
Xuehua Zhao ◽  
Yongbo Zhang

Abstract The decomposition and quantification of uncertainty sources in ensembles of climate-hydrological simulation chains is a key issue in climate impact researches. The mainly objectives of this study partitioning climate internal variability (CIV) and uncertainty sources in the climate-hydrological projections simulation process, the climate simulation process formed by six downscaled GCMs under two emission scenarios called GCMs-ES simulation chain, the hydrological simulation process add one calibrate Soil and Water Assessment Tool (SWAT) model called GCMs-ES-HM simulation chain. The CIV and external forcing of climate projections are investigated in each GCMs-ES simulation chain. The CIV of precipitation and ET are large in rainy season, and the single-to-noise ratio (SNR) are also relatively high in rainy season. Furthermore, the uncertainty decomposed frameworks based on analysis of variance (ANOVA) are established. The CIV and GCMs are the dominate contributors of runoff in rainy season. It worth noting the CIV can propagate from precipitation and ET to runoff projections. In additional, the hydrological model parameters are the third uncertainty contributor of runoff, which embody the hydrological model simulate process play important role in hydrological projections in future. The findings of this study advised that the uncertainty is complex in hydrological, hence, it is meaning and necessary to estimate the uncertainty in climate simulation process, the uncertainty analysis results can provide effectively efforts to reduce uncertainty and then give some positive suggestions to stakeholders for adaption countermeasure under climate change.


2020 ◽  
Vol 12 (19) ◽  
pp. 8204
Author(s):  
Ilaria Benedetti ◽  
Gianni Betti ◽  
Federico Crescenzi

Over the last few years, there has been increased interest in compiling poverty indicators for children, as well as in providing uncertainty measures that are associated with point estimates. In this paper, we provide point, variance, and interval confidence estimates of the at-risk-of-poverty rate indicator for 33 European countries. Using the 2018 EU-SILC survey, we analysed the spatial distribution of poverty by providing graphical representations at the national level. Our results reveal rates of child poverty that are higher than in the national estimates for most of the countries. By considering the computation of standard errors, we used the bootstrap method thanks to its convenient properties. It is worth noting that, for some countries, such as Finland, Belgium, and Ireland, the confidence intervals do not overlap. These results suggest differences among countries not only in terms of child poverty, but also in terms of social protection and the welfare state.


Sign in / Sign up

Export Citation Format

Share Document