Multi-objective robust design optimization of a novel negative Poisson’s ratio bumper system

2017 ◽  
Vol 60 (7) ◽  
pp. 1103-1110 ◽  
Author(s):  
Guan Zhou ◽  
WanZhong Zhao ◽  
ZhengDong Ma ◽  
ChunYan Wang ◽  
YuFang Li
Author(s):  
Guan Zhou ◽  
Wanzhong Zhao ◽  
Zheng-Dong Ma ◽  
Chunyan Wang ◽  
Yuanlong Wang

By possessing a good capacity for energy absorption and a lightweight structure, the negative Poisson’s ratio (NPR) structure has very fine prospects for application in vehicle engineering. By combining the traditional side door impact beam and a NPR structure, a novel side door NPR impact beam is first proposed in this work to improve the side impact crashworthiness in automobiles. The performance of the side door NPR impact beam is first studied in detail by comparison with a traditional side door impact beam and aluminum-foam-filled impact beam. To make further improvement on the performance of the side door NPR impact beam, the multi-objective design optimization while considering reliability is also investigated in this work. The parametric model of the NPR structure is established to improve modeling efficiency when the shape and topology are changed. A Latin hypercube sampling technique, orthogonal design, and a response surface model are then combined to construct the surrogate models. A radial-based importance sampling technique (RBIS) and multi-objective particle swarm optimization algorithm (MOPSO) are applied in the inner and outer loop respectively to find the optimal multi-objective reliability solutions. The results indicate that the side impact crashworthiness is improved remarkably by the side door NPR impact beam and the structure is further improved by the multi-objective reliability optimization. The studies in this work also serve as a good example for other improvements in automobile performance.


Author(s):  
Chun-Yan Wang ◽  
Wei-Wei Wang ◽  
Wan-Zhong Zhao ◽  
Yu-Fang Li ◽  
Guan Zhou

The bumper system always directly causes the injury of the pedestrian leg in the car–pedestrian accidents. Therefore, it is of practical significance to optimize the bumper structure to enhance the protective effect of the pedestrian leg. Based on the original bumper system, this work proposes a novel negative Poisson’s ratio energy-absorbing forepart with inner hexagonal cellular structure, which is designed at the lower leg impact zone between the bumper beam and the cover. The parametric model of the negative Poisson’s ratio forepart, the lower legform impactor model, and the car–pedestrian collision model are firstly established. Then, through integrating the response surface method, second-order reliability method, and archive-based micro genetic algorithm, a reliability optimization design is further conducted for the negative Poisson’s ratio forepart based on the deterministic optimization results. Simulation results show that the optimized negative Poisson’s ratio forepart not only can significantly enhance the reliability and robustness, but also improve the protective effect of the pedestrian leg.


Author(s):  
ChunYan Wang ◽  
SongChun Zou ◽  
WanZhong Zhao

The crash box can absorb energy from the beam as much as possible, so as to reduce the collision damage to the front part of the car body and protect the safety of passengers. This work proposes a novel crash box filled with a three-dimensional negative Poisson’s ratio (NPR) inner core based on an inner hexagonal cellular structure. In order to optimize and improve the crash box’s energy absorption performance, the multi-objective optimization model of the NPR crash box is established, which combines the optimal Latin hypercube design method and response surface methodology. Then, the microstructure parameters are further optimized by the multi-objective particle swarm optimization algorithm to obtain an excellent energy absorption effect. The simulation results show that the proposed NPR crash box can generate smooth and controllable deformation to absorb the total energy, and it can further enhance the crashworthiness through the designed optimization algorithm.


Author(s):  
Songchun Zou ◽  
Shijuan Dai ◽  
Wanzhong Zhao ◽  
Chunyan Wang ◽  
Han Zhang

To improve vehicle side crashworthiness, this paper first introduces the negative Poisson’s ratio structure to the traditional B-pillar and proposes a negative Poisson’s ratio B-pillar. Then, the performance of the negative Poisson’s ratio B-pillar is studied in detail by comparison with a traditional B-pillar and honeycomb B-pillar. Aiming at the problem that the side crashworthiness is also significantly affected by the side structure parameters of vehicle body, the factorial analysis theory is adopted to screen out the side structure parameters with significant effect. Based on this, by combining the optimal Latin hypercube design and response surface model, a multi-objective optimization design is conducted for those structure parameters based on non-dominated sorting genetic algorithm II. Finally, the normal boundary intersection method is adopted to seek the Pareto optimal solution, and the simulation results show that compared with the traditional B-pillar, the negative Poisson’s ratio B-pillar optimized by non-dominated sorting genetic algorithm II has better comprehensive crashworthiness. The results of this paper can provide some basis for the design and optimization of vehicle side crashworthiness.


Sign in / Sign up

Export Citation Format

Share Document