scholarly journals Advanced virtual prototyping for cyber-physical systems using RISC-V: implementation, verification and challenges

2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Vladimir Herdt ◽  
Rolf Drechsler

AbstractVirtual prototypes (VPs) are crucial in today’s design flow. VPs are predominantly created in SystemC transaction-level modeling (TLM) and are leveraged for early software development and other system-level use cases. Recently, virtual prototyping has been introduced for the emerging RISC-V instruction set architecture (ISA) and become an important piece of the growing RISC-V ecosystem. In this paper, we present enhanced virtual prototyping solutions tailored for RISC-V. The foundation is an advanced open source RISC-V VP implemented in SystemC TLM and designed as a configurable and extensible platform. It scales from small bare-metal systems to large multi-core systems that run applications on top of the Linux operating system. Based on the RISC-V VP, this paper also discusses advanced VP-based verification approaches and open challenges. In combination, we provide for the first time an integrated and unified overview and perspective on advanced virtual prototyping for RISC-V.

Author(s):  
Salah Eddine Saidi ◽  
Amir Charif ◽  
Tanguy Sassolas ◽  
Pierre-Guillaume Le Guay ◽  
Henrique Vicente Souza ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jin Woo Ro ◽  
Nathan Allen ◽  
Weiwei Ai ◽  
Debi Prasad ◽  
Partha S. Roop

Abstract The COVID-19 pandemic has posed significant challenges globally. Countries have adopted different strategies with varying degrees of success. Epidemiologists are studying the impact of government actions using scenario analysis. However, the interactions between the government policy and the disease dynamics are not formally captured. We, for the first time, formally study the interaction between the disease dynamics, which is modelled as a physical process, and the government policy, which is modelled as the adjoining controller. Our approach enables compositionality, where either the plant or the controller could be replaced by an alternative model. Our work is inspired by the engineering approach for the design of Cyber-Physical Systems. Consequently, we term the new framework Compositional Cyber-Physical Epidemiology. We created different classes of controllers and applied these to control the disease in New Zealand and Italy. Our controllers closely follow government decisions based on their published data. We not only reproduce the pandemic progression faithfully in New Zealand and Italy but also show the tradeoffs produced by differing control actions.


2020 ◽  
Author(s):  
Jin Woo Ro ◽  
Nathan Allen ◽  
Weiwei Ai ◽  
Debi Prasad ◽  
Partha S. Roop

AbstractCOVID-19 pandemic has posed significant challenges globally. Countries have adopted different strategies with varying degrees of success. Epidemiologists are studying the impact of government actions using scenario analysis. However, the interactions between the government policy and the disease dynamics are not formally captured.We, for the first time, formally study the interaction between the disease dynamics, which is modelled as a physical process, and the government policy, which is modelled as the adjoining controller. Our approach enables compositionality, where either the plant or the controller could be replaced by an alternative model. Our work is inspired by the engineering approach for the design of Cyber-Physical Systems (CPSs). Consequently, we term the new framework Compositional Cyber-Physical Epidemiology (CCPE). We created different classes of controllers and applied these to control the disease in New Zealand and Italy. Our controllers closely follow government decisions based on their published data. We not only reproduce the pandemic progression faithfully in New Zealand and Italy but also show the tradeoffs produced by differing control actions.


SIMULATION ◽  
2020 ◽  
Vol 96 (9) ◽  
pp. 753-765 ◽  
Author(s):  
Seyed-Hosein Attarzadeh-Niaki ◽  
Ingo Sander

The growing complexity of embedded and cyber-physical systems makes the design of all system components from scratch increasingly impractical. Consequently, already from early stages of a design flow, designers rely on prior experience, which comes in the form of legacy code or third-party intellectual property (IP) blocks. Current approaches partly address the co-simulation problem for specific scenarios in an ad hoc style. This work suggests a general method for co-simulation of heterogeneous IPs with a system modeling and simulation framework. The external IPs can be integrated as high-level models running in an external simulator or as software- and hardware-in-the-loop simulation with minimal effort. Examples of co-simulation scenarios for wrapping models with different semantics are presented together with their practical usage in two case studies. The presented method is also used to formulate a refinement-by-replacement workflow for IP-based system design.


Author(s):  
Marco Neves

Today we are living in the cusp of a new industrial revolution that differs from all the previous ones. It´s been coined as the Fourth Industrial Revolution (FIR) at the 2011 Hannover Fair. The first industrial revolution powered mainly by the steam engine, the second one by the advent of electrification, mass production and division of labor and the third one by the upcoming of internet, computers, networks and digital machines. What differs the FIR from all the others is that this one is on the edge of artificial intelligence, digital ubiquity, cyber-physical systems and even on the way to “Singularity”: where for the first time machines acquired capabilities that we only consider possible in humans. This means that we are fencing tremendous changes in what concerns to all the aspects of life, i.e. social, economic, cultural and, collaterally, in labor market.


2012 ◽  
Vol 29 ◽  
pp. 3717-3721 ◽  
Author(s):  
Xiao-Zhou Du ◽  
Jian-Zhong Qiao ◽  
Shu-Kuan Lin ◽  
Xiao-Chuan Tang

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 212 ◽  
Author(s):  
Xiaomin Wei ◽  
Yunwei Dong ◽  
Pengpeng Sun ◽  
Mingrui Xiao

As safety-critical systems, grid cyber-physical systems (GCPSs) are required to ensure the safety of power-related systems. However, in many cases, GCPSs may be subject to uncertain and nondeterministic environmental hazards, as well as the variable quality of devices. They can cause failures and hazards in the whole system and may jeopardize system safety. Thus, it necessitates safety analysis for system safety assurance. This paper proposes an architecture-level safety analysis approach for GCPSs applying the probabilistic model-checking of stochastic games. GCPSs are modeled using Architecture Analysis and Design Language (AADL). Random errors and failures of a GCPS and nondeterministic environment behaviors are explicitly described with AADL annexes. A GCPS AADL model including the environment can be regarded as a game. To transform AADL models to stochastic multi-player games (SMGs) models, model transformation rules are proposed and the completeness and consistency of rules are proved. Property formulae are formulated for formal verification of GCPS SMG models, so that occurrence probabilities of failed states and hazards can be obtained for system-level safety analysis. Finally, a modified IEEE 9-bus system with grid elements that are power management systems is modeled and analyzed using the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document