Numerical simulation and application of three-dimensional oil resources migration-accumulation of fluid dynamics in porous media

2008 ◽  
Vol 51 (8) ◽  
pp. 1144-1163 ◽  
Author(s):  
YiRang Yuan ◽  
YuJi Han
2019 ◽  
Vol 118 ◽  
pp. 01041
Author(s):  
Chenggang Yang ◽  
Yuning Zhang ◽  
Fenghe Yan ◽  
Wenguang Zhang ◽  
Wei Li

In this paper, three-dimensional numerical simulation was taken on a Linear Fresnel solar receiver tube using molten salt as heat transfer fluid (HTF), in which the porous media was filled to enhance the heat transfer efficiency. The simulation was to analyze the influence of the different conditions (filling rate, porosity and thermal conductivity) on heat transfer effect and wall temperature difference. The results revealed that the Nu (Nusselt number) increased firstly and then decreased with the increasing filling rate in both center filling and annular filling types. The optimal thermal performance were obtained when filling rate were 0.8 and 0.2 in center filling and annular filling, respectively. The Nu were about 1.7 and 1.5 times as the clear receiver. The circumferential temperature difference decreased firstly and then increased with filling rate increasing in both center filling and annular filling types. The lowest circumferential temperature differences were achieved at the filling rate 0.8 and 0.4 in center filling and annular filling types, and temperature difference decreased 15.88°C and 22°C compared with clear receiver, respectively. The Nu and PEC both decreased with porosity increasing. However, the thermal conductivity of porous media had little influence to the Nu and circumferential wall temperature.


2012 ◽  
Vol 446-449 ◽  
pp. 3875-3878
Author(s):  
Bai Feng Ji ◽  
Wei Lian Qu

Thunderstorm microbursts, which are sources of extreme wind loadings in nature, have caused numerous structural failures, especially collapses of transmission tower around the world. Numerical simulation using computational fluid dynamics (CFD) has recently made significant progress in simulating downbursts. In this paper, transient simulation of a three-dimensional moving downburst was studied using computational fluid dynamics simulation method. Transient simulation of a three-dimensional moving downburst was conducted using time-filtered Reynolds Averaged Navier-Stokes (RANS) numerical simulation method. The three-dimensional transient wind field characteristics in a moving downburst were studied in detail. The results indicate that transient wind field characteristics in a moving downburst present quite different characteristics compared with stationary downburst at different heights and radial positions.


Author(s):  
Oscar Darío Monsalve Cifuentes ◽  
Jonathan Graciano Uribe ◽  
Diego Andrés Hincapié Zuluaga

In this work, a 76 mm diameter propeller-type turbine is numerically investigated using a parametric study and computational fluid dynamics. The three-dimensional model of the turbine is modeled using data available in the bibliography. A mesh independence study is carried out utilizing a tetrahedron-based mesh with inflation layers around the turbine blade and the pipe wall. The best efficiency point is determined by the maximum hydraulic efficiency of 64.46 %, at a flow rate of 9.72x10-3 m3/s , a head drop of 1.76 m, and a mechanical power of 107.83 W. Additionally, the dimensionless distance y+, pressure, and velocity contours are shown.


2013 ◽  
Vol 427-429 ◽  
pp. 262-265
Author(s):  
De Fan Zhou ◽  
Qi Hui Zhou ◽  
Xiu Li Meng ◽  
Xiao Dong Yu ◽  
Zhi Qiang Wang ◽  
...  

In order to solve the mechanical deformation of the hydrostatic center rest, a numerical simulation concerning pressure field of hydrostatic center rest is studied. CFX of ANSYS has been used to compute three-dimensional pressure field of gap fluid between workpiece and bearing pillow. This research analyzes the influence of rotation speed on the bearing pressure performance according to lubricating theory and computational fluid dynamics, and it has revealed its pressure distribution law of gap oil film. Results indicate that an improved characteristic will be affected by rotation speed easily, and oil cavity pressure increases by gradually with rotation speed enhancing. The reliability of a hydrostatic center rest can be predicted through this method.


2013 ◽  
Vol 805-806 ◽  
pp. 1785-1789
Author(s):  
Chang Bin Wang ◽  
Miao Wang ◽  
Xiao Xu Li ◽  
Yu Liu ◽  
Jie Nan Dong

A three dimensional fluid flow model was set up in this paper, based on the computational fluid dynamics (CFD) and the elasticity theory. Using the finite volume method, a 120° bend was taken as a research object to simulate the erosion to the wall of fluid with sparse particles, finally, to determine the most severe wear areas.At the same time, the distribution of two-phase flows pressure and velocity was analyzed in 45° and 90° bends, then tracked the trajectory of the particles. The results show that the 90°bend has the smallest wear area and particle distribution or combination property is the best.


Sign in / Sign up

Export Citation Format

Share Document