Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces

2010 ◽  
Vol 55 (30) ◽  
pp. 3466-3471 ◽  
Author(s):  
ZhiQian Wang ◽  
NianDong Jiao ◽  
Steve Tung ◽  
ZaiLi Dong
2011 ◽  
Vol 257 (8) ◽  
pp. 3627-3631 ◽  
Author(s):  
Z.Q. Wang ◽  
N.D. Jiao ◽  
S. Tung ◽  
Z.L. Dong

2020 ◽  
Vol 992 ◽  
pp. 580-584
Author(s):  
V.Yu. Chukhlanov ◽  
O.G. Selivanov ◽  
N.V. Chukhlanova

New materials based on oligooxidridsilmethylensiloxysilane nanostructured with ethyl ester of orthosilicic acid – tetraethoxysilane have been studied in the research. Tetraethoxysilane introduction into the composition is supposed to cause its decomposition up to nanoparticles of silicon oxide. The alkoxysilane hydrolytic destruction kinetics and the impact of the composition and nature of the polymer composition components on the physical properties have been studied. Atomic force microscopy was used to study the structurization kinetics of the polymer composition. The composition hydrophobicity was determined by the edge wetting angle. To study the adhesion characteristics of the obtained material, the method of disc separation from the substrate has been used. The relative rigidity has been determined by a pendulum device M3. Atomic force microscopy revealed the presence of nanoscale neoplasms (at average of one hundred twenty per one square micrometer) in diameter from two to five nanometers in the surface structure of the composition, modified with tetraethoxysilane. Herewith the physical properties of the material change: rigidity increases, the edge angle of wetting increases as well. The studied nanostructured compositions can also be applied. For example – they can be used as a protective coating with a set of special properties, such as high hydrophobicity.


2005 ◽  
Vol 899 ◽  
Author(s):  
Abhinandan Agrawal ◽  
Gareth H. McKinley

AbstractThe formation of nanobubbles at solid-liquid interfaces has been studied using the atomic force microscopy (AFM) imaging technique. Nanobubble formation strongly depends on both the hydrophobicity of the solid surface and the polarity of the liquid subphase. While nanobubbles do not form on flat hydrophilic (silicon oxide wafer) surfaces immersed in water, they appear spontaneously at the interface of water against smooth, hydrophobic (silanized wafer) surfaces. From the experimental observations we draw the conclusion that the features observed in the AFM images are deformable, air-filled bubbles. In addition to the hydrophobicity of the solid surface, differences in solubility of air between two miscible fluids can also lead to formation of nanobubbles. We observe that nanobubbles appear at the interface of water against hydrophilic silicon oxide surfaces after in-situ mixing of ethanol and water in the fluid-cell.The shapes of the nanobubbles are well approximated by spherical caps, with width much larger than the height of the caps. We quantify the morphological distribution of nanobubbles by evaluating several important bubble parameters including surface coverage and radii of curvature. In conjunction, with an analytical model available in the literature, we use this information to estimate that the present nanobubble morphology may give rise to slip lengths ∼1–2 µm in pressure driven flows for water flowing over the hydrophobic surface. The consistency of the calculated slip length with the experimental values reported in the literature, suggests that the apparent fluid slip observed experimentally at hydrophobic surfaces may arise from the presence of nanobubbles.


2004 ◽  
Vol 15 (7) ◽  
pp. 862-866 ◽  
Author(s):  
C L Pang ◽  
T V Ashworth ◽  
H Raza ◽  
S A Haycock ◽  
G Thornton

2020 ◽  
Vol 301 ◽  
pp. 103-110
Author(s):  
Nurain Najihah Alias ◽  
Khatijah Aisha Yaacob ◽  
Kuan Yew Cheong

The unique electrical properties of silicon nanowires (SiNWs) is one of the reasons it become an attractive transducer for biosensor nowadays. Positive (holes) and negative (electron) charge carriers from SiNWs can simply interact with either positive or negative charge of sensing target. In this paper, we have studied the fabrication of silicon nanowires field effect transistor (SiNWs-FET) nanostructure patterned on 15 Ω resistivity of p-type silicon on insulator (SOI) wafer fabricated via atomic force microscopy lithography technique. To fabricate SiNWs-FET nanostructure, a conductive AFM tip, Cr/Pt cantilever tip, was used then various value of applied voltage, writing speed and relative humidity were studied. Subsequent, followed by wet etching processes, admixture of tetramethylammonium hydroxide (TMAH) and isopropyl alcohol (IPA) were used to remove the undesired of silicon layer and diluted hydrofluoric acid (HF) was used to remove the oxide layer. From the results, it shows that, cantilever tip at 9 V with 0.4 μm/s writing speed and relative humidity between 55% - 60% gives the best formation of silicon oxide to fabricate SiNWs-FET nanostructure.


Sign in / Sign up

Export Citation Format

Share Document