Single-step fabrication of bionic-superhydrophobic surface using reciprocating-type high-speed wire cut electrical discharge machining

2014 ◽  
Vol 59 (28) ◽  
pp. 3691-3695 ◽  
Author(s):  
Yan-Ling Wan ◽  
Jun Lou ◽  
Zhan-Jiang Yu ◽  
Xiao-Zhou Li ◽  
Hua-Dong Yu
2010 ◽  
Vol 34 (3) ◽  
pp. 453-460 ◽  
Author(s):  
Dongjue He ◽  
Hiroki Morita ◽  
Xiaoyou Zhang ◽  
Tadahiko Shinshi ◽  
Takayuki Nakagawa ◽  
...  

2012 ◽  
Vol 591-593 ◽  
pp. 303-306
Author(s):  
Xiao You Zhang ◽  
Akio Kifuji ◽  
Dong Jue He

Electrical discharge machining has the capability of machining all conductive materials regardless of hardness, and has the ability to deal with complex shapes. However, the speed and accuracy of conventional EDM are limited by probability and efficiency of the electrical discharges. This paper describes a three degrees of freedom (3-DOF) controlled, wide-bandwidth, high-precision, long-stroke magnetic drive actuator. The actuator can be attached to conventional electrical discharge machines to realize a high-speed and high-accuracy EDM. The actuator primarily consists of thrust and radial magnetic bearings, thrust and radial air bearings and a magnetic coupling mechanism. By using the thrust and radial magnetic bearings, the translational motions of the spindle can be controlled. The magnetic drive actuator possesses a positioning resolution of the order of micrometer, a bandwidth greater than 100Hz and a positioning stroke of 2mm.


Author(s):  
Xiaoyou ZHANG ◽  
Tadahiko SHINSHI ◽  
Akira SHIMOKOHBE ◽  
Yoshihito IMAI ◽  
Hidetaka MIYAKE ◽  
...  

2016 ◽  
Vol 861 ◽  
pp. 9-13
Author(s):  
Hong Jian Dong ◽  
Qin He Zhang ◽  
Lei Tan ◽  
Guo Wei Liu ◽  
Tuo Dang Guo

As a kind of commonly used tools, junior hacksaw plays an important role in our daily life. A new kind of bimetal band saw taken low carbon medium alloy steel X32 as the backing material and the high-speed steel M42 as the saw tooth material is developed. In this paper, a new method to machine the bimetal band saw with wire electrical discharge machining (WEDM) is introduced. The processing route for common tooth profile is calculated. The fixture with specific angles is designed with CAD software (proe5.0) and machined with 3D printing technology. The experiments show that bimetal band saw machined with WEDM method has better surface quality compared with that machined through the traditional grinding process. Without any burrs, the new bimetal band saw is more resistant to wear and has a longer service life.


2011 ◽  
Vol 189-193 ◽  
pp. 4245-4255
Author(s):  
Shi Jin Zhang ◽  
Yu Qiang Wu ◽  
Yan Li Wang

Technological advancement, on the one hand, made Electrical Discharge Machining (EDM) much faster. One example of that is the presence of Wire Electrical Discharge Machining – High Speed (WEDM-HS) machine, which makes the material removal rate as high as 80 . On the other hand, it also made Abrasive Waterjet (AWJ) achieve much better quality surface and tighter tolerance. As a result, these two types of machining process have converged to the point where they can complement one another quite nicely in selected applications. However, it does not mean user may pick any one for their applications. The proper selection not only decreases the manufacturing costs but also achieves better quality. This paper focuses on comparing WEDM-HS with AWJ by actually cutting a special designed sample. Through comparison from several aspects which include dimension precision, surface roughness, cost, cutting time and surface damage, a proper selection guidance for regular user has been provided.


2010 ◽  
Vol 4 (6) ◽  
pp. 552-561 ◽  
Author(s):  
Masahiko Kita ◽  
◽  
Tohru Ishida ◽  
Yoshimi Takeuchi

This study deals with the development of a new method of directly measuring the movement of an electrode during normal electrical discharge machining (EDM) and the movement of an electrode during EDM by means of an automatic discharge gap controller (ADGC) devised by our research group. The ADGC, which mainly consists of a bidirectional actuator using a shape memory alloy (SMA) and an electrode and power supply for EDM, can sustain stable EDMby autonomously and automatically controlling the position of the electrode to keep the discharge gap appropriate. However, the movement of the electrode being controlled by the ADGC cannot be directly measured due to itsminute, high-speed, vibration-like movements inside the working fluid during EDM. This means that there is no way to prove that the ADGC actually controls the position of the electrode so as to maintain a suitable discharge gap for continuing stable EDM. This also means that there is no way to evaluate the movement of the electrode quantitatively and to design or optimize the structure of an ADGC so as to give the ADGC the desired or best performance. Therefore, a method to directlymeasure the electrodemovement by an ADGC is devised in this study. The results obtained in the measurement experiments using this method of measurement prove that the ADGC actually moves its electrode to achieve stable EDM, and they allow the movement of the electrode to be evaluated quantitatively.


2007 ◽  
Vol 339 ◽  
pp. 281-285 ◽  
Author(s):  
Yong Feng Guo ◽  
Ji Cheng Bai ◽  
Guan Qun Deng ◽  
Ze Sheng Lu

Advanced engineering ceramics are more and more widely employed in modern industries because of their excellent mechanical properties such as high hardness, high compressive strength, high chemical and abrasive resistance. This paper investigates the high speed wire electrical discharge machining (HS-WEDM) of Si3N4-based ceramics by assisting electrode method. The theory of assisting electrode method is introduced. The machining phenomena under different electrical parameters were studied and the optimized machine pulse width was got. The material removal mechanisms change with the increase in the power of single pulse.


Sign in / Sign up

Export Citation Format

Share Document