scholarly journals Influences of environmental changes on water storage variations in Central Asia

2018 ◽  
Vol 28 (7) ◽  
pp. 985-1000 ◽  
Author(s):  
Weijie Hu ◽  
Hailong Liu ◽  
Anming Bao ◽  
Attia M. El-Tantawi
2017 ◽  
Vol 18 (5) ◽  
pp. 1564-1580 ◽  
Author(s):  
Xinwu Li ◽  
Xizhang Gao ◽  
Yuting Chang ◽  
Dapeng Mu ◽  
Hailong Liu ◽  
...  

Abstract Continental or regional water storage variations (WSVs) are crucial to regional economic development and human society and play an important role in coping with global change. Water scarcity is currently an especially key issue in Central Asia (CA), and therefore the study of WSVs can aid in the adoption of measures for mitigating pressures from contemporary environmental changes and economic development in CA. Based on Gravity Recovery and Climate Experiment (GRACE), Global Land Data Assimilation System (GLDAS), and CRU meteorological datasets and a proposed combined filter strategy, WSVs in Central Asia and its surrounding areas over 30 years are investigated in this paper. The results indicate that the WSVs derived from GRACE and GLDAS over CA generally show a decreasing tendency. CRU data demonstrated that CA has been undergoing a warming trend. The water loss in CA may be caused by warming, which will lead to the loss of soil moisture. Moreover, the water mass in the Tibetan Plateau and Tarim basin increases, which may be caused by glacier melting in the Pamirs and Himalaya. The precipitation contributed little to changes in water storage, but at the basin scale, the precipitation anomalies were very similar to the GRACE and GLDAS data, which can be viewed as an indicator of WSVs.


2020 ◽  
Vol 12 (2) ◽  
pp. 711 ◽  
Author(s):  
Wen Liu ◽  
Long Ma ◽  
Jilili Abuduwaili

A short lacustrine sediment core (41 cm) from Lake Bosten in arid central Asia was used to investigate the environmental changes that occurred in the past ≈150 years based on the superposition of climate and anthropogenic factors. Geochemical elements, total organic carbon (TOC) and nitrogen (TN), and stable isotope data (δ13Corg and δ15N) were used to identify abnormal environmental changes. The average C/N ratio in the sediments of Lake Bosten suggested that the organic matter in lake sediments was mainly from aquatic plants. The δ13Corg and δ15N in the lake sediments mainly reflect changes in the structure of the lake’s ecosystem. Before the 1960s, the primary productivity of the lake was relatively low with a relatively stable lake water environment. From the 1960s to the mid-1980s, the lake’s ecosystem was closely related to a significant decline in water levels caused by human activities and an increase in salinity. From the late 1980s to ≈2000, the aquatic plant structure of Lake Bosten did not change significantly. After 2000, the upper part of the sedimentary record suggested enhanced productivity due to urban and industrial development in the catchment area. However, sedimentary perspectives of the responses of different environmental proxies in sediments to human activities were anisochronous, and the increasing heavy metal (Pb and Cu) and P accumulations appeared in 1970, reflecting heightened human impacts. Through the comparison between the Aral Sea and Lake Bosten, it was inferred that, under the intervention of human activities, the lake experienced a completely different evolution trend. Humans, as geological agents, should protect our living environment while satisfying social development. The results will provide an important supplement to a large spatial scale study of the influences of human activities on the environment in Central Asia, which also has some significant implications for the protection of the ecological environment and the realization of sustainable development in arid regions.


2019 ◽  
Vol 1 (3) ◽  
pp. 031006 ◽  
Author(s):  
Heiko Apel ◽  
Ben Gouweleeuw ◽  
Abror Gafurov ◽  
Andreas Güntner

2009 ◽  
Vol 194 (1-2) ◽  
pp. 68-78 ◽  
Author(s):  
Bao Yang ◽  
Jinsong Wang ◽  
Achim Bräuning ◽  
Zhibao Dong ◽  
Jan Esper

Author(s):  
Keting Feng ◽  
Yaonan Zhang ◽  
Yanping Cao ◽  
Yongping Shen

With the influences of climate change and human activities, the resources and environment of “One Belt and One Road” are facing severe problems and challenges. This study aims to analyze the temporal and spatial dynamics of the drought environment and the response of vegetation cover to the drought by using drought indicators. Gravity Recovery and Climate Experiment (GRACE) drought severity index (GRACE-DSI) and GRACE water storage deficit index (GRACE-WSDI), were calculated to present hydrological drought. Moreover, based on GRACE, Water-Global Assessment and Prognosis (WaterGAP) model, and Global Land Data Assimilation System (GLDAS) data, the groundwater in Central Asia was retrieved to calculate the groundwater drought index called the GRACE Standardized Groundwater Level Index (GRACE-SGI). The results show that the annual precipitation in Central Asia increased slightly at a rate of 0.39 mm/year (p = 0.82) since 2000, while the temperature increased slightly at a rate of 0.05 ℃/year (p = 0.10). The water storage decreased significantly at -0.59 mm/year (p <0.01) and experienced a decrease-increase-decrease process. During the study period, the arid situation in Central Asia deteriorated, especially in the eastern coast of the Caspian Sea and the Aral Sea basin. From 2007 to 2015, the Central Asian environment was generally arid and suffered from different du-rations and degrees of hydrological and groundwater droughts. The drought indicators (i.e., GRACE-DSI, GRACE-WSDI) and the NDVI showed a significantly positive correlation during the growing season. However, the NDVI of cultivated land and grassland distribution areas in Central Asia showed a strong negative correlation with GRACE-SGI. It is concluded that the drought environment in Central Asia affected the growth of vegetation. The continued deterioration of the arid situation may further stress the ecological system in Central Asia.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3385
Author(s):  
Ye Lyu ◽  
Yue Huang ◽  
Anming Bao ◽  
Ruisen Zhong ◽  
Han Yang

In this study, the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin in Central Asia were selected as typical study areas. Temporal/spatial changes from 2002 to 2016 in the terrestrial water storage (TWS) and the groundwater storage (GWS) were analyzed, based on RL06 Mascon data from the Gravity Recovery and Climate Experiment (GRACE) satellite, and the sum of soil water content, snow water equivalent and canopy water data that were obtained from Global Land Data Assimilation System (GLDAS). Combing meteorological data and land use and cover change (LUCC) data, the joint impact of both human activities and climate change on the terrestrial water storage change (TWSC) and the groundwater storage change (GWSC) was evaluated by statistical analysis. The results revealed three findings: (1) The TWS retrieved by CSR (Center for Space Research) and the JPL (Jet Propulsion Laboratory) showed a decreasing trend in the three basins, and the variation of TWS showed a maximum surplus in spring (March–May) and a maximum deficit in autumn (September–November). (2) The decreasing rates of groundwater storage that were extracted, based on JPL and CSR Mascon data sets, were −2.17 mm/year and −3.90 mm/year, −3.72 mm/year and −4.96 mm/year, −1.74 mm/year and −3.36 mm/year in the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin, respectively. (3) In the Amu Darya river basin, annual precipitation showed a decreasing trend, while the evapotranspiration rate showed an increasing trend due to an increasing temperature, and the TWS decreased from 2002 to 2016 in most areas of the basin. However, in the middle reaches of the Amu Darya river basin, the TWS increased due to the increase in cultivated land area, water income from flooded irrigation, and reservoir impoundment. In the upper reaches of the Syr Darya river basin, the increase in precipitation in alpine areas leads to an increase in glacier and snow meltwater, which is the reason for the increase in the TWS. In the middle and lower reaches of the Syr Darya river basin, the amount of evapotranspiration dissipation exceeds the amount of water replenished by agricultural irrigation, which leads to a decrease in TWS and GWS. The increase in precipitation in the northwest of the Balkhash lake basin, the increase in farmland irrigation water, and the topography (higher in the southeast and lower in the northwest) led to an increase in TWS and GWS in the northwest of the Balkhash lake basin. This study can provide useful information for water resources management in the inland river basins of Central Asia.


Sign in / Sign up

Export Citation Format

Share Document