Green Synthesis, Characterization, and Thermal Study of Silver Nanoparticles by Achras sapota, Psidium guajava, and Azadirachta indica Plant Extracts

Plasmonics ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. 1219-1226 ◽  
Author(s):  
Arunkumar Lagashetty ◽  
Manjunath K. Patil ◽  
Sangappa K. Ganiger
RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2804-2837
Author(s):  
Chhangte Vanlalveni ◽  
Samuel Lallianrawna ◽  
Ayushi Biswas ◽  
Manickam Selvaraj ◽  
Bishwajit Changmai ◽  
...  

Herein, we have reviewed new findings in the research domain of the green synthesis of silver nanoparticles using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015.


2021 ◽  
Vol 21 (Suppliment-1) ◽  
pp. 2091-2097
Author(s):  
K. Anandalakshmi

2020 ◽  
Vol 13 (11) ◽  
pp. 8248-8261 ◽  
Author(s):  
Kishore Chand ◽  
Dianxue Cao ◽  
Diaa Eldin Fouad ◽  
Ahmer Hussain Shah ◽  
Abdul Qadeer Dayo ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 998
Author(s):  
Kartini Kartini ◽  
Amarisa Alviani ◽  
Dia Anjarwati ◽  
Adinda Finna Fanany ◽  
Johan Sukweenadhi ◽  
...  

Silver nanoparticles (AgNPs) are an interesting metal nanoparticle that can be incorporated into pharmaceutical products, including for diabetic foot ulcers as an antimicrobial agent. Green synthesis of AgNPs using plant extracts has been drawing much attention as it is simple, eco-friendly, stable, and cost-effective. This present study was performed to evaluate the potential of three Indonesian medicinal plant extracts, namely Phyllanthus niruri (PN), Orthosiphon stamineus (OS), and Curcuma longa (CL), as reducing and capping agents in the green synthesis of AgNPs, and to optimize their concentrations. Based on the yields and characteristics of the formed nanoparticles, which were analyzed using a UV-Vis spectrophotometer, particle size analyzer, scanning electron microscope, and X-ray diffractometer, Phyllanthus niruri extract at a concentration of 0.5% was concluded as the best extract in the green synthesis of AgNPs. It is thereby a prospective reducing and capping agent for further scale-up studies.


2021 ◽  
Vol 14 (38) ◽  
pp. 2888-2898
Author(s):  
S Chaitanya Kumari ◽  
◽  
V Selvakumar ◽  
P Naga Padma ◽  
K Anuradha

2017 ◽  
Vol 6 (7) ◽  
pp. 5441 ◽  
Author(s):  
Geetha Venugopal

In the present study, Psidium guajava leaves were taken for synthesizing silver nanoparticles and checked their antibacterial activity against E.coli, Klebsiella, Pseudomonas, Staphylococcus and Acinetobacter. The plant extract was analysed for the detection of the presence of protein, carbohydrate, flavonoids, terpenoids, glycosides, steroids, saponins, phenols and tannins. In this present study, the antibacterial activity of green synthesized silver nanoparticles from guava leaf shows the zone of inhibition against all the five pathogens.


2022 ◽  
Vol 46 (1) ◽  
Author(s):  
Habeeb Hiba ◽  
John E. Thoppil

Abstract Background Scientists created a new area known as "green nanotechnology" by combining the concept of sustainability with nanotechnology. Its goal is to eliminate the use of chemicals in nanoparticle manufacturing by replacing them with plant-based materials. Green synthesis is promoted as the best alternative to the traditional method of nanoparticle synthesis in this new domain. Plants that constitute a major portion of our biodiversity are embraced with inherent potentiality to be transformed as miracle medicine due to its phytochemicals. These phytochemicals efficiently replace the classical wet chemical ingredients involved in nanoparticle synthesis by upgrading to greener method for its synthesis. By incorporating plant-based sources as the chief ingredient of nanoparticle synthesis, we are able to reduce the hazards of greenhouse gas emissions and enlighten the insights of our scientific community with nanotechnology for green innovation. Hence, this review simultaneously aims at promoting plant extracts as the most efficient as well as renewable recipe for green synthesis of silver nanoparticles and preparing earth for a greener tomorrow. Methodology Scientific articles and publications were selected from reputed journals and sorted out with pertinent keywords of this review. Electronic sources like Google Scholar, PubMed, Research Gate, Science Direct, Wiley Online Library, Web of Science and Scopus were searched for potential articles and recent breakthroughs published in the area of silver nanoparticle synthesis via green chemistry and biological methods using plant extracts. Scientific names of medicinal plants were checked using botanical databases like Plant List and International Plant Names Index. Conclusion This review pinpoints on empowering better life on earth by protecting it from hazardous effects of conventional nanotechnological production through replacing the former with sustainable green synthesis approach. Ergo, it outlines that by incorporating plant-based sources as the chief ingredient of nanoparticle synthesis, we are able to reduce the hazards of greenhouse gas emissions in turn by slowing down increasing climate change disasters globally and enlighten the insights of our scientific community with nanotechnology for green innovation.


2020 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
Ayat Ahmed Alrasheid ◽  
Sahar Hussein Eltilib ◽  
Shimaa Abdel Rahman Ahmed ◽  
Alaa Abdulmoneim Mohamed ◽  
Hiba Abbas Widatalla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document