scholarly journals Different Susceptibility of T and B Cells to Cladribine Depends On Their Levels of Deoxycytidine Kinase Activity Linked to Activation Status

Author(s):  
Federico Carlini ◽  
Federico Ivaldi ◽  
Francesca Gualandi ◽  
Ursula Boschert ◽  
Diego Centonze ◽  
...  

Abstract Deoxycytidine kinase (dCK) and 5’ deoxynucleotidase (NT5C2) are involved in metabolism of cladribine (2CdA), the immunomodulatory drug for multiple sclerosis; by mediating phosphorylation (activation) or phosphorolysis (deactivation) of 2CdA, respectively, these enzymes promote or prevent its accumulation in the cell, which leads to cell death. In particular, lymphocytes which present with a high intracellular dCK/NT5C2 ratio are more sensitive to 2CdA than other immune cells. We aim at determining if the expression of these enzymes and/or their activity differ in specific progenitor and mature immune cells and are influenced by cellular activation and/or exposure to 2CdA. Flow cytometry analysis showed no difference in dCK/NT5C2 ratio in progenitor and mature immune cells. 2CdA induced apoptosis in stimulated T and B cells and unstimulated B cells. dCK expression was enhanced by 2CdA at mRNA and protein levels in activated T cells and mRNA level in activated B cells. dCK activity, measured through an in-house luminescence release enzyme assay was higher in activated T and B cells, and such an increase was abrogated in activated B cells, but not T cells, upon exposure to 2CdA. These results reveal an important relationship between dCK activity and the effect of 2CdA on B and T cells, according to their activation status. Further study is warranted to evaluate whether dCK activity could, in the future, be a suitable predictive biomarker of lymphocyte response to 2CdA. Graphical Abstract "Image missing"

1984 ◽  
Vol 160 (6) ◽  
pp. 1919-1924 ◽  
Author(s):  
L K Jung ◽  
S M Fu

A monoclonal antibody, AB1, was established with activated human B cells as immunogen. AB1 stained activated B cells but not activated T cells. Its selective reactivity to activated B cells was further documented by its nonreactivity to activated T cells, resting T and B cells, monocytes, granulocytes, bone marrow cells, leukemic cells, and cells from cell lines of T, B, and myeloid lineages. Upon activation, the antigen appeared on B cells as early as 3-4 h after stimulation and was fully expressed by 38 h. The expression of this antigen was not dependent on the presence of B cell stimulatory factor(s). Anti-IgM antibodies by themselves induced its expression. AB1 inhibited B cell proliferation that was induced by a low dose anti-IgM antibody and conditioned medium containing B cell stimulatory factor. It did not inhibit B cell proliferation induced by either high doses of anti-IgM antibodies or by formalinized Staphylococcus aureus. It also failed to inhibit T cell mitogenesis. The possibility exists that this antigen is related to the receptor for B cell stimulatory factor.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1248-1248
Author(s):  
Christopher Ungerer ◽  
Patricia Quade-Lyssy ◽  
Reinhard Henschler ◽  
Erhard Seifried ◽  
Heinfried Radeke ◽  
...  

Abstract Abstract 1248 Therapeutic approaches using multipotent mesenchymal stromal cells (MSCs) are advancing in regenerative medicine, transplantation and autoimmune diseases. Until now the way of action for MSC-mediated immune suppression is still controversial and relies most probably on a multifactorial mechanism. MSCs have been demonstrated to produce the suppressive molecules hepatocyte growth factor (HGF), tumor growth factor-β (TGF-β), prostaglandin E2 (PGE2) and indoleamine 2,3-dioxygenase (IDO). Furthermore, it has been described that immunosuppression by MSCs is enhanced via stimulation with interferon-γ (IFN-γ). Recently, galectin-1, a β-galactoside binding lectin with immune modulatory properties, has been added to the group of immune modulatory molecules that are responsible for MSC-mediated immune suppression. Here, we identified galectin-9 (Gal-9) as a new molecule involved in MSC-mediated immune modulation. First, we isolated MSCs from bone marrow of randomly selected donors and performed several in vitro experiments regarding their immune modulatory potential (e.g proliferation and IgG production). Interestingly, Gal-9 was the only investigated protein, which was strongly upregulated in MSCs upon activation with IFN-γ. We moreover demonstrate that Gal-9 is a major mediator of the anti-proliferative effect of MSCs on T-cells. Although a B-cell suppressive function of Gal-9 has previously not been reported, we were surprised to detect the same inhibitory effect on isolated B-cells. Proliferation of immune cells was triggered upon either stimulation with either PHA and LPS, or CD40L and PHA. Activation of MSCs with IFN-γ resulted in a major decrease of proliferation of both T-cells and B-cells. In addition, Gal-9 and activated MSCs contribute to the suppression of VZV triggered immunoglobulin release as well. Again activation of MSCs with IFN-γ decreased the IgG release, whereas blocking Gal-9 with lactose, a well characterized inhibitor of Gal-9 function, reversed the effect almost completely. Further, we determined that Gal-9 expression levels (mRNA and protein) distinguish between MSC cultures from different donors after activation. Among donors, we could differentiate between individuals with high Gal-9 levels and higher immune modulatory potential and such with low Gal-9 expression and lower immune modulatory potential. Compared to untreated MSCs we demonstrated a three- to fifty-fold rise in Gal-9 levels after prior activation with IFN-γ. In addition, we demonstrated the upregulation of Gal-9 in MSCs by cell-cell contacts with either T-or B-cells. The upregulation was additionally at least two fold increased by previeously activating MSCs with IFN-γ. Because our group is interested in the therapy of hemophilia A and because of the unxpected suppressive effect of Gal-9 on B-cells and B-cell function, we next tested the effect of MSCs and Gal-9 on the induction of inhibitory antibodies to coagulation factor VIII (FVIII). Mice were immunized with human coagulation factor VIII (FVIII) in the presence or absence of either human MSCs, anti-murine Gal-9 or human Gal-9. As predicted, MSCs suppressed and anti-Gal-9 antibodies anhanced antibody formation. However in contrary to the expected, human Gal-9 co-treatment enhanced the anti-FVIII antibody response. A set of additional experiments revealed, that human Gal-9 suppresses murine regulatory T-cells in vivo. Further, in contrast to human immune cells, murine-derived T- and B-cells did not respond to human recombinant Gal-9 in vitro, but human IFN-γ activated MSCs were able to suppress proliferation of murine immune cells. Because of only 60% homology of murine and human Gal-9 we assume that the murine model cannot predict the function of human Gal-9 and that MSC-mediated immune modulatory functions are exerted via alternative pathways in this setting. Experiments with murine Gal-9 to demonstrate the in vivo function of Gal-9 are ongoing. In conclusion, Gal-9 is novel mediator of MSC immunomodulatory functions and affectsmultiple immune cell types including B-cells. Gal-9 is differentially expressed in MSCs from different donors and may therefore serve as a predictive indicator for clinical MSC functionality. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 183 (3) ◽  
pp. 979-989 ◽  
Author(s):  
E Stüber ◽  
W Strober

Recent in vitro studies have established that activated B cells express OX40 ligand (L), a member of the tumor necrosis factor/nerve growth factor family of cytokines, and become stimulated to proliferate and secrete immunoglobulin (Ig) after cross-linking of OX40L by its counterreceptor OX40, which is expressed on activated T cells. In the present study we investigated the in vivo role of this receptor-ligand pair for the interaction of T and B cells in the course of the T-dependent B cell response against 2,4,6 trinitro-phenyl-keyhole limpet hemocyanin. First, we showed that OX40 is maximally expressed by T cells in the periarteriolar lymphoid sheath (PALS) 3 d after primary immunization. These OX40+ cells are located in close proximity to antigen-specific, activated B cells. Second, we demonstrated that blocking of OX40-OX40L interaction with polyclonal anti-OX40 antibody or with antibodies against certain peptide sequences within its extracellular domain resulted in a profound decrease of the anti-hapten IgG response, whereas the antihapten IgM response was grossly unchanged. Third, we showed that this antibody treatment leads to an inhibition of the development of PALS-associated B cell foci, whereas the formation of germinal centers remained intact. Finally, our data suggest that, whereas B cell memory development was not impaired by anti-OX40 administration, OX40-OX40L interaction seems to be crucial in the secondary immune response. We conclude from these data that the OX40-OX40L interaction in vivo is necessary for the differentiation of activated B cells into highly Ig-producing cells, but is not involved in other pathways of antigen-driven B cell differentiation such as memory cell development in the germinal centers.


Nature ◽  
1984 ◽  
Vol 312 (5995) ◽  
pp. 641-643 ◽  
Author(s):  
M. C. Mingari ◽  
F. Gerosa ◽  
G. Carra ◽  
R. S. Accolla ◽  
A. Moretta ◽  
...  

1994 ◽  
Vol 24 (4) ◽  
pp. 787-792 ◽  
Author(s):  
Cees van Kooten ◽  
Claude Gaillard ◽  
Jean-Pierre Galizzi ◽  
Patrice Hermann ◽  
François Fossiez ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 3949 ◽  
Author(s):  
C.M. Figueredo ◽  
R. Lira-Junior ◽  
R.M. Love

Periodontal disease is characterised by a dense inflammatory infiltrate in the connective tissue. When the resolution is not achieved, the activation of T and B cells is crucial in controlling chronic inflammation through constitutive cytokine secretion and modulation of osteoclastogenesis. The present narrative review aims to overview the recent findings of the importance of T and B cell subsets, as well as their cytokine expression, in the pathogenesis of the periodontal disease. T regulatory (Treg), CD8+ T, and tissue-resident γδ T cells are important to the maintenance of gingival homeostasis. In inflamed gingiva, however, the secretion of IL-17 and secreted osteoclastogenic factor of activated T cells (SOFAT) by activated T cells is crucial to induce osteoclastogenesis via RANKL activation. Moreover, the capacity of mucosal-associated invariant T cells (MAIT cells) to produce cytokines, such as IFN-γ, TNF-α, and IL-17, might indicate a critical role of such cells in the disease pathogenesis. Regarding B cells, low levels of memory B cells in clinically healthy periodontium seem to be important to avoid bone loss due to the subclinical inflammation that occurs. On the other hand, they can exacerbate alveolar bone loss in a receptor activator of nuclear factor kappa-B ligand (RANKL)-dependent manner and affect the severity of periodontitis. In conclusion, several new functions have been discovered and added to the complex knowledge about T and B cells, such as possible new functions for Tregs, the role of SOFAT, and MAIT cells, as well as B cells activating RANKL. The activation of distinct T and B cell subtypes is decisive in defining whether the inflammatory lesion will stabilise as chronic gingivitis or will progress to a tissue destructive periodontitis.


2021 ◽  
pp. 1-19
Author(s):  
Sonia George ◽  
Trevor Tyson ◽  
Nolwen L. Rey ◽  
Rachael Sheridan ◽  
Wouter Peelaerts ◽  
...  

Background: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α- synucleinopathies, such as Parkinson’s disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease. Objective To study the role of the adaptive immune system with respect to α-syn pathology. Methods: We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. Results: Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. Conclusion: Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.


1974 ◽  
Vol 140 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Melvyn Greaves ◽  
George Janossy ◽  
Michael Doenhoff

Human lymphocytes from spleen and tonsils have been cultured with a variety of polyclonal mitogens. Cultures consisted of either unseparated T and B cells or alternatively purified T or B lymphocytes. The purity of the starting cell populations and the origin of activated lymphoblasts was analyzed with a panel of seven markers which discriminate between T and B cells. The selectivity of the lymphocyte responses was influenced by cell populations in a given culture, the mitogen used, and to a limited extent on culture conditions. Purified T lymphocytes from tonsil and spleen responded to phytohemagglutinin (PHA), pokeweed mitogen (PWM), and staphylococcal enterotoxin B (SEB). Purified B cells from spleen responded well to PWM, weakly to SEB and lipopolysaccharide, but not at all to PHA. Tonsil B cells responded weakly to PWM and SEB but not to PHA. Some B lymphocytes do respond to PHA in the presence of activated T cells. These results are discussed in relation to previously reported selective responses of human cells and parallel studies in animal species.


Sign in / Sign up

Export Citation Format

Share Document