Effects of body postures on the shear modulus of thoracolumbar fascia: a shear wave elastography study

2021 ◽  
Vol 59 (2) ◽  
pp. 383-390
Author(s):  
Baizhen Chen ◽  
Chunlong Liu ◽  
Ming Lin ◽  
Weixin Deng ◽  
Zhijie Zhang
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Baizhen Chen ◽  
Hongzhou Zhao ◽  
Linrong Liao ◽  
Zhijie Zhang ◽  
Chunlong Liu

AbstractThe objectives of this study were to examine the intra and inter-operator reliability of shear wave elastography (SWE) device in quantifying the shear modulus of thoracolumbar fascia (TLF) and the device’s abilities to examine the shear modulus of the TLF during upper body forward. Twenty healthy male subjects participated in this study (mean age: 18.4 ± 0.7 years). Two independent operators performed the shear modulus of TLF during upper body forward using SWE, and interclass correlation coefficient (ICC) and minimum detectable change (MDC) were calculated. The shear modulus of the TLF was quantified by operator A using SWE at upper body forward 60°. The intra-operator (ICC = 0.860–0.938) and inter-operator (ICC = 0.904–0.944) reliabilities for measuring the shear modulus of the TLF with the upper body forward 0° were rated as both excellent, and the MDC was 4.71 kPa. The TLF shear modulus of upper body forward 60°was increased 45.5% (L3) and 55.0% (L4) than that of upper body forward 0°. The results indicate that the SWE is a dependable tool to quantify the shear modulus of TLF and monitor its dynamic changes. Therefore, this device can be used for biomechanical study and intervention experiments of TLF.


2014 ◽  
Vol 50 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Yasuhide Yoshitake ◽  
Yohei Takai ◽  
Hiroaki Kanehisa ◽  
Minoru Shinohara

2019 ◽  
Vol 10 ◽  
Author(s):  
Julien Siracusa ◽  
Keyne Charlot ◽  
Alexandra Malgoyre ◽  
Sébastien Conort ◽  
Pierre-Emmanuel Tardo-Dino ◽  
...  

2020 ◽  
Vol 99 ◽  
pp. 109498 ◽  
Author(s):  
Naoya Iida ◽  
Keigo Taniguchi ◽  
Kota Watanabe ◽  
Hiroki Miyamoto ◽  
Tatsuya Taniguchi ◽  
...  

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Erik Widman ◽  
Elira Maksuti ◽  
Matthew Urban ◽  
Kenneth Caidahl ◽  
Matilda Larsson

Introduction: Shear Wave Elastography (SWE) is a recently developed noninvasive method for elastography assessment using ultrasound. The technique consists of sending an acoustic radiation force into the tissue that in turn generates an orthogonal low frequency propagating shear wave. The shear wave propagation speed, which is calculated from B-mode images, is correlated to the tissues mechanical properties. Currently, SWE is primarily used in breast and liver to detect tumors easily missed with normal B-mode ultrasound. SWE could potentially aid in the characterization of plaques in the carotid artery, which is critical for the prevention of ischemic stroke. Methods: Six polyvinyl alcohol (PVA) phantoms were created with soft and hard plaque mimicking inclusions. The plaques were excited with acoustic radiation force and the shear wave was measured using high speed B-mode imaging. The data was post-processed with a custom in-house algorithm fitting a model of a Lamb wave propagating through a plate to the shear wave dispersion curve, which allowed the shear modulus to be estimated. The results were validated by measuring the phantom plaque shear modulus with mechanical testing. Results: SWE measured a mean shear modulus of 6 ± 1 kPa and 106 ± 17 kPa versus 3 kPa and 95 kPa measured by mechanical testing in the soft and hard plaques respectively. The results show good agreement between the shear modulus measured with SWE and mechanical testing. In this study simplified homogenous phantom plaque models were examined in a static experimental setup with results validated by mechanical testing. Algorithm improvements for measurements in a dynamic environment are being developed for a future in vivo pilot study. Conclusion: The results show good agreement between the shear modulus measured with SWE and mechanical testing and indicate the possibility for an in vivo application.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124311 ◽  
Author(s):  
Naokazu Miyamoto ◽  
Kosuke Hirata ◽  
Hiroaki Kanehisa ◽  
Yasuhide Yoshitake

Author(s):  
Adam Kositsky ◽  
David J. Saxby ◽  
Kim J. Lesch ◽  
Rod S. Barrett ◽  
Heikki Kröger ◽  
...  

The semitendinosus muscle contains distinct proximal and distal compartments arranged anatomically in-series but separated by a tendinous inscription, with each compartment innervated by separate nerve branches. Although extensively investigated in other mammals, compartment-specific mechanical properties within the human semitendinosus have scarcely been assessed in vivo. Experimental data obtained during muscle-tendon unit stretching (e.g., slack angle) can also be used to validate and/or improve musculoskeletal model estimates of semitendinosus muscle force. The purpose of this study was to investigate the passive stretching response of proximal and distal humans semitendinosus compartments to distal joint extension. Using two-dimensional shear wave elastography, we bilaterally obtained shear moduli of both semitendinosus compartments from 14 prone-positioned individuals at ten knee flexion angles (from 90° to 0° [full extension] at 10° intervals). Passive muscle mechanical characteristics (slack angle, slack shear modulus, and the slope of the increase in shear modulus) were determined for each semitendinosus compartment by fitting a piecewise exponential model to the shear modulus-joint angle curves. We found no differences between compartments or legs for slack angle, slack shear modulus, or the slope of the increase in shear modulus. We also found the experimentally determined slack angle occurred at ~15-80° higher knee flexion angles compared to estimates from two commonly used musculoskeletal models, depending on participant and model used. Overall, these findings demonstrate that passive shear modulus-joint angle curves do not differ between proximal and distal human semitendinosus compartments, and provide experimental data to improve semitendinosus force estimates derived from musculoskeletal models.


2022 ◽  
Author(s):  
Jiping Zhou ◽  
Yuyi Lin ◽  
Jiehong Zhang ◽  
Xingxian Si’tu ◽  
Ji Wang ◽  
...  

Abstract The mechanical properties of deep fascia (i.e. an index of stiffness) strongly affect the development of muscle pathologies, and muscular actions, such as compartment syndromes. Actually, a clear understanding of the mechanical characterization of muscle deep fascia still lacks. The present study focuses on examining the reliability of ultrasonic shear wave elastography device (USWE) in quantifying the shear modulus of gastrocnemius fascia in healthy individual and the device’s abilities to examine the shear modulus of gastrocnemius deep fascia during ankle dorsiflexion. Twenty-one healthy males participated in the study (age: 21.48±1.17 years). The shear modulus of the medial gastrocnemius fascia (MGF) and lateral gastrocnemius fascia (LGF) were quantified at different angles using USWE during passive lengthening. The operators took turns to measure each subject’s MGF and LGF over 1-hour period and by operator B with a 2-hour interval. In the intra-operator test, the same subjects participated at the same time 5 days later. The intra-rater [ Intra-class correlation coefficient (ICC) = 0.846-0.965)] and inter-rater (ICC = 0.877-0.961) reliabilities for measuring the shear modulus of the MGF and LGF were rated as both excellent, and the standard error in measurement (SEM) was 3.49 kPa, the minimal detectable change (MDC) was 9.68 kPa. Regardless of the ankle angle, the shear modulus of the LGF were significant greater than that of the MGF (p < 0.001). The significant increase in the shear modulus both of the MGF and LGF were observed at neutral position compared to the relaxed position. This results indicate that the USWE is a technique to assess the shear modulus of gastrocnemius fascia and detect its dynamic changes during ankle dorsiflexion. USWE can be used for biomechanical study and intervention experiments of deep fascia.


Sign in / Sign up

Export Citation Format

Share Document