scholarly journals In vivo assessment of the passive stretching response of the bi-compartmental human semitendinosus muscle using shear wave elastography

Author(s):  
Adam Kositsky ◽  
David J. Saxby ◽  
Kim J. Lesch ◽  
Rod S. Barrett ◽  
Heikki Kröger ◽  
...  

The semitendinosus muscle contains distinct proximal and distal compartments arranged anatomically in-series but separated by a tendinous inscription, with each compartment innervated by separate nerve branches. Although extensively investigated in other mammals, compartment-specific mechanical properties within the human semitendinosus have scarcely been assessed in vivo. Experimental data obtained during muscle-tendon unit stretching (e.g., slack angle) can also be used to validate and/or improve musculoskeletal model estimates of semitendinosus muscle force. The purpose of this study was to investigate the passive stretching response of proximal and distal humans semitendinosus compartments to distal joint extension. Using two-dimensional shear wave elastography, we bilaterally obtained shear moduli of both semitendinosus compartments from 14 prone-positioned individuals at ten knee flexion angles (from 90° to 0° [full extension] at 10° intervals). Passive muscle mechanical characteristics (slack angle, slack shear modulus, and the slope of the increase in shear modulus) were determined for each semitendinosus compartment by fitting a piecewise exponential model to the shear modulus-joint angle curves. We found no differences between compartments or legs for slack angle, slack shear modulus, or the slope of the increase in shear modulus. We also found the experimentally determined slack angle occurred at ~15-80° higher knee flexion angles compared to estimates from two commonly used musculoskeletal models, depending on participant and model used. Overall, these findings demonstrate that passive shear modulus-joint angle curves do not differ between proximal and distal human semitendinosus compartments, and provide experimental data to improve semitendinosus force estimates derived from musculoskeletal models.

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Erik Widman ◽  
Elira Maksuti ◽  
Matthew Urban ◽  
Kenneth Caidahl ◽  
Matilda Larsson

Introduction: Shear Wave Elastography (SWE) is a recently developed noninvasive method for elastography assessment using ultrasound. The technique consists of sending an acoustic radiation force into the tissue that in turn generates an orthogonal low frequency propagating shear wave. The shear wave propagation speed, which is calculated from B-mode images, is correlated to the tissues mechanical properties. Currently, SWE is primarily used in breast and liver to detect tumors easily missed with normal B-mode ultrasound. SWE could potentially aid in the characterization of plaques in the carotid artery, which is critical for the prevention of ischemic stroke. Methods: Six polyvinyl alcohol (PVA) phantoms were created with soft and hard plaque mimicking inclusions. The plaques were excited with acoustic radiation force and the shear wave was measured using high speed B-mode imaging. The data was post-processed with a custom in-house algorithm fitting a model of a Lamb wave propagating through a plate to the shear wave dispersion curve, which allowed the shear modulus to be estimated. The results were validated by measuring the phantom plaque shear modulus with mechanical testing. Results: SWE measured a mean shear modulus of 6 ± 1 kPa and 106 ± 17 kPa versus 3 kPa and 95 kPa measured by mechanical testing in the soft and hard plaques respectively. The results show good agreement between the shear modulus measured with SWE and mechanical testing. In this study simplified homogenous phantom plaque models were examined in a static experimental setup with results validated by mechanical testing. Algorithm improvements for measurements in a dynamic environment are being developed for a future in vivo pilot study. Conclusion: The results show good agreement between the shear modulus measured with SWE and mechanical testing and indicate the possibility for an in vivo application.


2021 ◽  
Vol 59 (2) ◽  
pp. 383-390
Author(s):  
Baizhen Chen ◽  
Chunlong Liu ◽  
Ming Lin ◽  
Weixin Deng ◽  
Zhijie Zhang

2014 ◽  
Vol 50 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Yasuhide Yoshitake ◽  
Yohei Takai ◽  
Hiroaki Kanehisa ◽  
Minoru Shinohara

2020 ◽  
Vol 29 (5) ◽  
pp. 578-582
Author(s):  
Masatoshi Nakamura ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Nobushige Takahashi ◽  
Tomoichi Yoshida

Context: In clinical and sports settings, static stretching (SS) is usually performed to increase range of motion (ROM) and decrease passive muscle stiffness. Recently, the shear elastic modulus was measured by ultrasonic shear wave elastography as an index of muscle stiffness. Previous studies reported that the shear elastic modulus measured by ultrasound shear wave elastography decreased after SS, and the effects of SS on shear elastic modulus were likely affected by rest duration between sets of SS. Objective: To investigate the acute effects of SS with different rest durations on ROM and shear elastic modulus of gastrocnemius and to clarify whether the rest duration between sets of SS decreases the shear elastic modulus. Design: A randomized, repeated-measures experimental design. Setting: University laboratory. Participants: Sixteen healthy males volunteered to participate in the study (age 21.3 [0.8] y; height 171.8 [5.1] cm; weight 63.1 [4.5] kg). Main Outcome Measures: Each participant underwent 3 different rest interval durations during SS (ie, long rest duration: 90 s; normal rest duration: 30 s; and short rest duration: 10 s). This SS technique was repeated 10 times, thus lasting a total of 300 seconds with different rest durations in each protocol. The dorsiflexion ROM and shear elastic modulus were measured before and after SS. Results: Our results revealed that dorsiflexion ROM and shear elastic modulus were changed after 300-second SS; however, no effects of the rest duration between sets of SS were observed. Conclusions: In terms of decreasing the shear elastic modulus, clinicians and coaches should not focus on the rest duration when SS intervention is performed.


2019 ◽  
Vol 10 ◽  
Author(s):  
Julien Siracusa ◽  
Keyne Charlot ◽  
Alexandra Malgoyre ◽  
Sébastien Conort ◽  
Pierre-Emmanuel Tardo-Dino ◽  
...  

2020 ◽  
Vol 99 ◽  
pp. 109498 ◽  
Author(s):  
Naoya Iida ◽  
Keigo Taniguchi ◽  
Kota Watanabe ◽  
Hiroki Miyamoto ◽  
Tatsuya Taniguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document