A Mathematical Model of Cell Cycle Progression Applied to the MCF-7 Breast Cancer Cell Line

2011 ◽  
Vol 74 (3) ◽  
pp. 736-767 ◽  
Author(s):  
Kate Simms ◽  
Nigel Bean ◽  
Adrian Koerber
2011 ◽  
Vol 205 ◽  
pp. S79
Author(s):  
C. Ventura ◽  
V. Gaido ◽  
C.A. Pontillo ◽  
M.A. Núñez ◽  
D.L. Kleiman de Pisarev ◽  
...  

2020 ◽  
Vol 5 (38) ◽  
pp. 11850-11853
Author(s):  
Anderson Roberto de Souza ◽  
Mona Stefany de Souza Castro ◽  
Thiago Olímpio de Souza ◽  
Rodrigo Cassio Sola Veneziani ◽  
Jairo Kenupp Bastos ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefania Nobili ◽  
Antonella Mannini ◽  
Astrid Parenti ◽  
Chiara Raggi ◽  
Andrea Lapucci ◽  
...  

AbstractInvasive ductal carcinoma (IDC) constitutes the most frequent malignant cancer endangering women’s health. In this study, a new spontaneously immortalized breast cancer cell line, DHSF-BR16 cells, was isolated from the primary IDC of a 74-years old female patient, treated with neoadjuvant chemotherapy and disease-free 5-years after adjuvant chemotherapy. Primary breast cancer tissue surgically removed was classified as ER−/PR−/HER2+, and the same phenotype was maintained by DHSF-BR16 cells. We examined DHSF-BR16 cell morphology and relevant biological and molecular markers, as well as their response to anticancer drugs commonly used for breast cancer treatment. MCF-7 cells were used for comparison purposes. The DHSF-BR16 cells showed the ability to form spheroids and migrate. Furthermore, DHSF-BR16 cells showed a mixed stemness phenotype (i.e. CD44+/CD24−/low), high levels of cytokeratin 7, moderate levels of cytokeratin 8 and 18, EpCAM and E-Cadh. Transcriptome analysis showed 2071 differentially expressed genes between DHSF-BR16 and MCF-7 cells (logFC > 2, p-adj < 0.01). Several genes were highly upregulated or downregulated in the new cell line (log2 scale fold change magnitude within − 9.6 to + 12.13). A spontaneous immortalization signature, mainly represented by extracellular exosomes-, plasma membrane- and endoplasmic reticulum membrane pathways (GO database) as well as by metabolic pathways (KEGG database) was observed in DHSF-BR16 cells. Also, these cells were more resistant to anthracyclines compared with MCF-7 cells. Overall, DHSF-BR16 cell line represents a relevant model useful to investigate cancer biology, to identify both novel prognostic and drug response predictive biomarkers as well as to assess new therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document