scholarly journals Improving Parameter Inference from FRAP Data: an Analysis Motivated by Pattern Formation in the Drosophila Wing Disc

2017 ◽  
Vol 79 (3) ◽  
pp. 448-497 ◽  
Author(s):  
Lin Lin ◽  
Hans G. Othmer
Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 571-584 ◽  
Author(s):  
J.A. Williams ◽  
S.W. Paddock ◽  
S.B. Carroll

The legs and wings of insects and vertebrates develop from secondary embryonic fields that arise after the primary body axes have been established. In order to understand how the insect imaginal wing field is patterned, we have examined in detail the temporal and spatial expression patterns of, and epistatic relationships between, four key regulatory genes that are specifically required for wing formation in Drosophila. The wingless protein, in a role surprisingly distinct from its embryonic segment polarity function, appears to be the earliest-acting member of the hierarchy and crucial for distinguishing the notum/wing subfields, and for the compartmentalization of the dorsal and ventral wing surfaces. The wingless product is required to restrict the expression of the apterous gene to dorsal cells and to promote the expression of the vestigial and scalloped genes that demarcate the wing primordia and act in concert to promote morphogenesis.


Author(s):  
J.S. Ryerse

Gap junctions are intercellular junctions found in both vertebrates and invertebrates through which ions and small molecules can pass. Their distribution in tissues could be of critical importance for ionic coupling or metabolic cooperation between cells or for regulating the intracellular movement of growth control and pattern formation factors. Studies of the distribution of gap junctions in mutants which develop abnormally may shed light upon their role in normal development. I report here the distribution of gap junctions in the wing pouch of 3 Drosophila wing disc mutants, vg (vestigial) a cell death mutant, 1(2)gd (lethal giant disc) a pattern abnormality mutant and 1(2)gl (lethal giant larva) a neoplastic mutant and compare these with wildtype wing discs.The wing pouch (the anlagen of the adult wing blade) of a wild-type wing disc is shown in Fig. 1 and consists of columnar cells (Fig. 5) joined by gap junctions (Fig. 6). 14000x EMs of conventionally processed, UA en bloc stained, longitudinally sectioned wing pouches were enlarged to 45000x with a projector and tracings were made on which the lateral plasma membrane (LPM) and gap junctions were marked.


Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 117-126
Author(s):  
Jane Karlsson ◽  
R. J. Smith

It is a general rule that of two complementary Drosophila imaginal disc fragments, one regenerates and the other duplicates. This paper reports an investigation of an exception to this rule. Duplicating fragments from the periphery of the wing disc which lacked presumptive notum were found to regenerate notum structures during and after duplication. The propensity for this was greatest in fragments lying close to the presumptive notum, with the exception of a fragment confined to the posterior compartment, which did not regenerate notum. Structures were added sequentially, and regeneration stopped once most of the notum was present. These results are not easily explained by the polar coordinate model, which states that regeneration cannot occur from duplicating fragments. Since compartments appear to be involved in this type of regeneration as in others, it is suggested that a new type of model is required, one which permits simultaneous regeneration and duplication, and assigns a major role to compartments.


2016 ◽  
Vol 113 (45) ◽  
pp. E6993-E7002 ◽  
Author(s):  
Anupama Hemalatha ◽  
Chaitra Prabhakara ◽  
Satyajit Mayor

Endocytosis of ligand-receptor complexes regulates signal transduction during development. In particular, clathrin and dynamin-dependent endocytosis has been well studied in the context of patterning of the Drosophila wing disc, wherein apically secreted Wingless (Wg) encounters its receptor, DFrizzled2 (DFz2), resulting in a distinctive dorso-ventral pattern of signaling outputs. Here, we directly track the endocytosis of Wg and DFz2 in the wing disc and demonstrate that Wg is endocytosed from the apical surface devoid of DFz2 via a dynamin-independent CLIC/GEEC pathway, regulated by Arf1, Garz, and class I PI3K. Subsequently, Wg containing CLIC/GEEC endosomes fuse with DFz2-containing vesicles derived from the clathrin and dynamin-dependent endocytic pathway, which results in a low pH-dependent transfer of Wg to DFz2 within the merged and acidified endosome to initiate Wg signaling. The employment of two distinct endocytic pathways exemplifies a mechanism wherein cells in tissues leverage multiple endocytic pathways to spatially regulate signaling.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4095-4103 ◽  
Author(s):  
P.A. Lawrence ◽  
B. Sanson ◽  
J.P. Vincent

Recent experiments on the wing disc of Drosophila have shown that cells at the interface between the anterior and posterior compartments drive pattern formation by becoming the source of a morphogen. Here we ask whether this model applies to the ventral embryonic epidermis. First, we show that interfaces between posterior (engrailed ON) and anterior (engrailed OFF) cells are required for pattern formation. Second, we provide evidence that Wingless could play the role of the morphogen, at least within part of the segmental pattern. We looked at the cuticular structures that develop after different levels of uniform Wingless activity are added back to unsegmented embryos (wingless- engrailed-). Because it is rich in landmarks, the T1 segment is a good region to analyse. There, we find that the cuticle formed depends on the amount of added Wingless activity. For example, a high concentration of Wingless gives the cuticle elements normally found near the top of the presumed gradient. Unsegmented embryos are much shorter than wild type. If Wingless activity is added in stripes, the embryos are longer than if it is added uniformly. We suggest that the Wingless gradient landscape affects the size of the embryo, so that steep slopes would allow cells to survive and divide, while an even distribution of morphogen would promote cell death. Supporting the hypothesis that Wingless acts as a morphogen, we find that these stripes affect, at a distance, the type of cuticle formed and the planar polarity of the cells.


Sign in / Sign up

Export Citation Format

Share Document