scholarly journals Taxonomy and phylogeny of Aphanomycopsis bacillariacearum, a holocarpic oomycete parasitoid of the freshwater diatom genus Pinnularia

2021 ◽  
Vol 20 (3) ◽  
pp. 289-298
Author(s):  
Anthony T. Buaya ◽  
Bettina Scholz ◽  
Marco Thines

AbstractInvestigations into simple holocarpic oomycetes are challenging, because of the obligate biotrophic nature of many lineages and the periodic presence in their hosts. Thus, despite recent efforts, still, the majority of species described remains to be investigated for their phylogenetic relationships. One of these species is Aphanomycopsis bacillariacearum, the type species of the genus Aphanomycopsis. Species of Aphanomycopsis are endobiotic holocarpic parasites of diverse hosts (e.g., diatoms, desmids, dinoflagellates). All species classified in this genus were assigned to it based on the presence of branching hyphae and the formation of two generations of zoospores, of which the first one is not motile. Originally, Aphanomycopsis with its type species, A. bacillariacearum, had been classified in the Saprolegniaceae. However, the genus has undergone multiple taxonomic reassignments (to Ectrogellaceae, Lagenidiaceae, and Leptolegniellaceae) in the past. To settle the taxonomy and investigate the phylogenetic placement of Aphanomycopsis, efforts were undertaken to isolate A. bacillariacearum from its original host, Pinnularia viridis and infer its phylogenetic placement based on nrSSU (18S) sequences. By targeted isolation, the diatom parasitoid was rediscovered from Heiðarvatn lake, Höskuldsstaðir, Iceland. Phylogenetic reconstruction shows that A. bacillariacearum from Pinnularia viridis is embedded within the Saprolegniales, and largely unrelated to both diatom-infecting oomycetes in the Leptomitales (Ectrogella, Lagenisma) and those placed within the early-diverging lineages (Miracula, Diatomophthora) of the Oomycota.

Author(s):  
A.T. Buaya ◽  
B. Scholz ◽  
M. Thines

The genus Sirolpidium (Sirolpidiaceae) of the Oomycota includes several species of holocarpic obligate aquatic parasites. These organisms are widely occurring in marine and freshwater habitats, mostly infecting filamentous green algae. Presently, all species are only known from their morphology and descriptive life cycle traits. None of the seven species classified in Sirolpidium, including the type species, S. bryopsidis, has been rediscovered and studied for their molecular phylogeny, so far. Originally, the genus was established to accommodate all parasites of filamentous marine green algae. In the past few decades, however, Sirolpidium has undergone multiple taxonomic revisions and several species parasitic in other host groups were added to the genus. While the phylogeny of the marine rhodophyte- and phaeophyte-infecting genera Pontisma and Eurychasma, respectively, has only been resolved recently, the taxonomic placement of the chlorophyte-infecting genus Sirolpidium remained unresolved. In the present study, we report the phylogenetic placement of Sirolpidium bryopsidis infecting the filamentous marine green algae Capsosiphon fulvescens sampled from Skagaströnd in Northwest Iceland. Phylogenetic reconstructions revealed that S. bryopsidis is either conspecific or at least very closely related to the type species of Pontisma, Po. lagenidioides. Consequently, the type species of genus Sirolpidium, S. bryopsidis, is reclassified to Pontisma. Further infection trials are needed to determine if Po. bryopsidis and Po. lagenidioides are conspecific or closely related. In either case, the apparently recent host jump from red to green algae is remarkable, as it opens the possibility for radiation in a largely divergent eukaryotic lineage.


Phytotaxa ◽  
2014 ◽  
Vol 177 (1) ◽  
pp. 1 ◽  
Author(s):  
Peter Johnston ◽  
DUCKCHUL PARK ◽  
HANS-OTTO BARAL ◽  
RICARDO GALÁN ◽  
GONZALO PLATAS ◽  
...  

Morphological and phylogenetic data are used to revise the genus Torrendiella. The type species, described from Europe, is retained within the Rutstroemiaceae. However, Torrendiella species reported from Australasia, southern South America and China were found to be phylogenetically distinct and have been recombined in the newly proposed genus Hymenotorrendiella. The Hymenotorrendiella species are distinguished morphologically from Rutstroemia in having a Hymenoscyphus-type rather than Sclerotinia-type ascus apex. Zoellneria, linked taxonomically to Torrendiella in the past, is genetically distinct and a synonym of Chaetomella.


2020 ◽  
Vol 5 (1) ◽  
pp. 113-118 ◽  
Author(s):  
A.T. Buaya ◽  
M. Thines

The oomycete genus Ectrogella currently comprises a rather heterogeneous group of obligate endoparasitoids, mostly of diatoms and algae. Despite their widespread occurrence, little is known regarding the phylogenetic affinities of these bizarre organisms. Traditionally, the genus was included within the Saprolegniales, based on zoospore diplanetism and a saprolegnia/achlya-like zoospore discharge. The genus has undergone multiple re-definitions in the past, and has often been used largely indiscriminately for oomycetes forming sausage-like thalli in diatoms. While the phylogenetic affinity of the polyphyletic genus Olpidiopsis has recently been partially resolved, taxonomic placement of the genus Ectrogella remained unresolved, as no sequence data were available for species of this genus. In this study, we report the phylogenetic placement of Ectrogella bacillariacearum infecting the freshwater diatom Nitzschia sigmoidea. The phylogenetic reconstruction shows that Ectrogella bacillariacearum is grouped among the early diverging lineages of the Saprolegniomycetes with high support, and is unrelated to the monophyletic diatom-infecting olpidiopsis-like species. As these species are neither related to Ectrogella, nor to the early diverging lineages of Olpidiopsis s. str. and Miracula, they are placed in a new genus, Diatomophthora, in the present study.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 146
Author(s):  
Jordan Hoffman ◽  
Ilinca Ciubotariu ◽  
Limonty Simubali ◽  
Twig Mudenda ◽  
William Moss ◽  
...  

Despite dramatic reductions in malaria cases in the catchment area of Macha Hospital, Choma District, Southern Province in Zambia, prevalence has remained near 1–2% by RDT for the past several years. To investigate residual malaria transmission in the area, this study focuses on the relative abundance, foraging behavior, and phylogenetic relationships of Anopheles squamosus specimens. In 2011, higher than expected rates of anthropophily were observed among “zoophilic” An. squamosus, a species that had sporadically been found to contain Plasmodium falciparum sporozoites. The importance of An. squamosus in the region was reaffirmed in 2016 when P. falciparum sporozoites were detected in numerous An. squamosus specimens. This study analyzed Centers for Disease Control (CDC) light trap collections of adult mosquitoes from two collection schemes: one performed as part of a reactive-test-and-treat program and the second performed along a geographical transect. Morphological identification, molecular verification of anopheline species, and blood meal source were determined on individual samples. Data from these collections supported earlier studies demonstrating An. squamosus to be primarily exophagic and zoophilic, allowing them to evade current control measures. The phylogenetic relationships generated from the specimens in this study illustrate the existence of well supported clade structure among An. squamosus specimens, which further emphasizes the importance of molecular identification of vectors. The primarily exophagic behavior of An. squamosus in these collections also highlights that indoor vector control strategies will not be sufficient for elimination of malaria in southern Zambia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Alejandra Serna-Sánchez ◽  
Oscar A. Pérez-Escobar ◽  
Diego Bogarín ◽  
María Fernanda Torres-Jimenez ◽  
Astrid Catalina Alvarez-Yela ◽  
...  

AbstractRecent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.


2003 ◽  
Vol 8 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Cherylynn Bassani

This paper discusses changes in Japanese parenting over the past two generations. Using an inductive approach to the understanding of Japanese families, 10 separate families were theoretically sampled in the Kansai area during the summer of 2000. Concepts surrounding changing parenting emerged from talks with parents. Four interrelated concepts are eminent in the interviews: the rise of individual ethics in parenting, changing parental roles, impacts of changes on children, and romanticized parenting. Key generational and gender differences are apparent across all four concepts. Concepts that emerged from these interviews reflect changes in society and the family that past research has addressed.


2003 ◽  
Vol 81 (11) ◽  
pp. 1885-1893 ◽  
Author(s):  
Salah Bouamer ◽  
Serge Morand

The phylogenetic relationships of 23 oxyurid species from five genera (21 parasite species of the Palaearctic Testudinidae, 1 parasite species of Uromastix acanthinurus Bell, 1825 from Algeria, and 1 parasite species of Cteno sa ura pectinata (Wiegmann, 1834) from Mexico) were investigated using 30 morphological characters obtained from species descriptions. The nonweighted analysis produced one shortest tree. All species of the ingroup form a monophyletic group and the oxyurid species of Testudinidae form a monophyletic group. The type species of the genus Alaeuris Thapar, 1925 is the basal member of the species parasitizing Testudinidae. The analysis confirms the monophyly of the genus Thaparia Ortlepp, 1933, whereas the genera Mehdiella Seurat, 1918 and Tachygonetria Wedl, 1862 are considered paraphyletic groups. The large diversification in the genus Tachygonetria is linked to their position in the host caecum. The ancestral state is in the paramucous and the derived state is in the centre of the caecum. This suggests that recent speciation in the group occurs in the centre of the caecum.


1987 ◽  
Vol 119 (3) ◽  
pp. 215-230 ◽  
Author(s):  
Alasdair J. Ritchie ◽  
Joseph D. Shorthouse

AbstractThe species of Synophromorpha Ashmead (Hymenoptera: Cynipidae) are reviewed. One new species is described (Synophromorpha kaulbarsi; type locality: Naupan, Puebla, Mexico). The previously described species (S. rubi Weld, S. sylvestris (O.S.), and S. terricola Weld) are redescribed, and a key to species is presented. All species are illustrated for the first time. Synophromorpha sylvestris is designated type-species for the genus and a lectotype is chosen. Hypotheses on the phylogenetic relationships between the species of Synophromorpha are presented.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3638 ◽  
Author(s):  
Ellen E. Strong ◽  
Lee Ann Galindo ◽  
Yuri I. Kantor

The genusCleafrom SE Asia is from one of only two unrelated families among the megadiverse predatory marine Neogastropoda to have successfully conquered continental waters. While little is known about their anatomy, life history and ecology, interest has grown exponentially in recent years owing to their increasing popularity as aquarium pets. However, the systematic affinities of the genus and the validity of the included species have not been robustly explored. Differences in shell, operculum and radula characters support separation ofCleaas presently defined into two distinct genera:Clea, for the type speciesClea nigricansand its allies, andAnentomeforClea helenaand allies. A five-gene mitochondrial (COI, 16S, 12S) and nuclear (H3, 28S) gene dataset confirms the placement ofAnentomeas a somewhat isolated offshoot of the family Nassariidae and sister to the estuarineNassodonta. Anatomical data corroborate this grouping and, in conjunction with their phylogenetic placement, support their recognition as a new subfamily, the Anentominae. The assassin snailAnentome helena, a popular import through the aquarium trade so named for their voracious appetite for other snails, is found to comprise a complex of at least four species. None of these likely represents trueAnentome helenadescribed from Java, including a specimen purchased through the aquarium trade under this name in the US and one that was recently found introduced in Singapore, both of which were supported as conspecific with a species from Thailand. The introduction ofAnentome“helena” through the aquarium trade constitutes a significant threat to native aquatic snail faunas which are often already highly imperiled. Comprehensive systematic revision of this previously unrecognized species complex is urgently needed to facilitate communication and manage this emerging threat.


Author(s):  
Carlos Castaneda-Alvarez ◽  
Simona Prodan ◽  
Alan Zamorano ◽  
Ernesto San-Blas ◽  
Erwin Aballay

Xenorhabdus is a symbiotic group of bacteria associated with entomopathogenic nematodes of the family Steinernematidae. Although the described Steirnernema species list is extensive, not all their symbiotic bacteria have been identified. One single motile, Gram-negative and non-spore-forming rod-shaped symbiotic bacterium, strain VLST, was isolated from the entomopathogenic nematode Steinernema unicornum. Analyses of the 16S rRNA gene determined that the VLST isolate belongs to the genus Xenorhabdus , and its closest related species is Xenorhabdus szentirmaii DSM 16338T (98.2 %). Deeper analyses using the whole genome for phylogenetic reconstruction indicate that VLST exhibits a unique clade in the genus. Genomic comparisons considering digital DNA–DNA hybridization (dDDH) values confirms this result, showing that the VLST values are distant enough from the 70 % threshold suggested for new species, sharing 30.7, 30.5 and 30.3 % dDDH with Xenorhabdus khoisanae MCB, Xenorhabdus koppenhoeferi DSM 18168T and Xenorhabdus miraniensis DSM 18168T, respectively, as the closest species. Detailed physiological, biochemical and chemotaxonomic tests of the VLST isolate reveal consistent differences from previously described Xenorhabdus species. Phylogenetic, physiological, biochemical and chemotaxonomic approaches show that VLST represents a new species of the genus Xenorhabdus , for which the name Xenorhabdus lircayensis sp. nov. (type strain VLST=CCCT 20.04T=DSM 111583T) is proposed.


Sign in / Sign up

Export Citation Format

Share Document