scholarly journals Sirolpidium bryopsidis, a parasite of green algae, is probably conspecific with Pontisma lagenidioides, a parasite of red algae

Author(s):  
A.T. Buaya ◽  
B. Scholz ◽  
M. Thines

The genus Sirolpidium (Sirolpidiaceae) of the Oomycota includes several species of holocarpic obligate aquatic parasites. These organisms are widely occurring in marine and freshwater habitats, mostly infecting filamentous green algae. Presently, all species are only known from their morphology and descriptive life cycle traits. None of the seven species classified in Sirolpidium, including the type species, S. bryopsidis, has been rediscovered and studied for their molecular phylogeny, so far. Originally, the genus was established to accommodate all parasites of filamentous marine green algae. In the past few decades, however, Sirolpidium has undergone multiple taxonomic revisions and several species parasitic in other host groups were added to the genus. While the phylogeny of the marine rhodophyte- and phaeophyte-infecting genera Pontisma and Eurychasma, respectively, has only been resolved recently, the taxonomic placement of the chlorophyte-infecting genus Sirolpidium remained unresolved. In the present study, we report the phylogenetic placement of Sirolpidium bryopsidis infecting the filamentous marine green algae Capsosiphon fulvescens sampled from Skagaströnd in Northwest Iceland. Phylogenetic reconstructions revealed that S. bryopsidis is either conspecific or at least very closely related to the type species of Pontisma, Po. lagenidioides. Consequently, the type species of genus Sirolpidium, S. bryopsidis, is reclassified to Pontisma. Further infection trials are needed to determine if Po. bryopsidis and Po. lagenidioides are conspecific or closely related. In either case, the apparently recent host jump from red to green algae is remarkable, as it opens the possibility for radiation in a largely divergent eukaryotic lineage.

2021 ◽  
Vol 20 (3) ◽  
pp. 289-298
Author(s):  
Anthony T. Buaya ◽  
Bettina Scholz ◽  
Marco Thines

AbstractInvestigations into simple holocarpic oomycetes are challenging, because of the obligate biotrophic nature of many lineages and the periodic presence in their hosts. Thus, despite recent efforts, still, the majority of species described remains to be investigated for their phylogenetic relationships. One of these species is Aphanomycopsis bacillariacearum, the type species of the genus Aphanomycopsis. Species of Aphanomycopsis are endobiotic holocarpic parasites of diverse hosts (e.g., diatoms, desmids, dinoflagellates). All species classified in this genus were assigned to it based on the presence of branching hyphae and the formation of two generations of zoospores, of which the first one is not motile. Originally, Aphanomycopsis with its type species, A. bacillariacearum, had been classified in the Saprolegniaceae. However, the genus has undergone multiple taxonomic reassignments (to Ectrogellaceae, Lagenidiaceae, and Leptolegniellaceae) in the past. To settle the taxonomy and investigate the phylogenetic placement of Aphanomycopsis, efforts were undertaken to isolate A. bacillariacearum from its original host, Pinnularia viridis and infer its phylogenetic placement based on nrSSU (18S) sequences. By targeted isolation, the diatom parasitoid was rediscovered from Heiðarvatn lake, Höskuldsstaðir, Iceland. Phylogenetic reconstruction shows that A. bacillariacearum from Pinnularia viridis is embedded within the Saprolegniales, and largely unrelated to both diatom-infecting oomycetes in the Leptomitales (Ectrogella, Lagenisma) and those placed within the early-diverging lineages (Miracula, Diatomophthora) of the Oomycota.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
João P. M. Araújo ◽  
Mitsuru G. Moriguchi ◽  
Shigeru Uchiyama ◽  
Noriko Kinjo ◽  
Yu Matsuura

AbstractThe entomopathogenic genus Ophiocordyceps includes a highly diverse group of fungal species, predominantly parasitizing insects in the orders Coleoptera, Hemiptera, Hymenoptera and Lepidoptera. However, other insect orders are also parasitized by these fungi, for example the Blattodea (termites and cockroaches). Despite their ubiquity in nearly all environments insects occur, blattodeans are rarely found infected by filamentous fungi and thus, their ecology and evolutionary history remain obscure. In this study, we propose a new species of Ophiocordyceps infecting the social cockroaches Salganea esakii and S. taiwanensis, based on 16 years of collections and field observations in Japan, especially in the Ryukyu Archipelago. We found a high degree of genetic similarity between specimens from different islands, infecting these two Salganea species and that this relationship is ancient, likely not originating from a recent host jump. Furthermore, we found that Ophiocordyceps lineages infecting cockroaches evolved around the same time, at least twice, one from beetles and the other from termites. We have also investigated the evolutionary relationships between Ophiocordyceps and termites and present the phylogenetic placement of O. cf. blattae. Our analyses also show that O. sinensis could have originated from an ancestor infecting termite, instead of beetle larvae as previously proposed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Alejandra Serna-Sánchez ◽  
Oscar A. Pérez-Escobar ◽  
Diego Bogarín ◽  
María Fernanda Torres-Jimenez ◽  
Astrid Catalina Alvarez-Yela ◽  
...  

AbstractRecent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.


2021 ◽  
Author(s):  
Geoffrey Kariuki Kinuthia ◽  
Veronica Ngure ◽  
Luna Kamau

Abstract Background Levels of Mercury (Hg), Lead (Pb), Chromium (Cr), Cadmium (Cd), Thallium (Tl), and Nickel (Ni) in samples of wastewater, filamentous green algae (spirogyra) and urban mosquitoes obtained from open wastewater channels in Nairobi industrial area, Kenya, was established. Industrial wastewater may contain hazardous heavy metals upon exposure. Aquatic organisms in wastewater may accumulate the toxic elements with time. Therefore, human population living in informal settlements in Nairobi industrial area risk exposure to such toxic elements. Biomonitoring using aquatic organisms can be key in metal exposure assessment. Results Pb, Cr, & Ni levels ranged from 3.08 to 15.31 µg/L while Tl, Hg, & Cd levels ranged from 0.05 to 0.12 µg/L in wastewater. Pb, Cr, Ni, & Cd levels were above WHO, Kenya & US EPA limits for wastewater but Hg was not. Metals in tap water (control) which ranged from 0.01 to 0.2 µg/L was below WHO, US EPA, & Kenya standard limits. Pb, Cr, Tl, & Ni levels in assorted field mosquitoes were 1.3 to 2.4 times higher than in assorted laboratory-reared mosquitoes. Hg & Cd concentrations in laboratory-reared mosquitoes (0.26 mg/L & 1.8 mg/L respectively) was higher than in field mosquitoes (0.048 mg/L & 0.12 mg/L respectively). Pb, Cr, Ni, & Cd levels in green filamentous algae were 110.62, 29.75, 14.45, & 0.44 mg/L respectively and above WHO limits for vegetable plants. Hg level in algae samples (0.057 mg/L) was below WHO standard limits but above Kenya & US EPA limits in vegetables. Correlations for Pb & Hg (r = 0.957; P < 0.05); Cd & Cr (r = 0.985; P < 0.05) in algae samples were noted. The metal concentrations in the samples were in the order, wastewater < mosquitoes < filamentous green algae. Conclusion Samples of wastewater, mosquitoes and filamentous green algae from open wastewater channels and immediate vicinity, in Nairobi industrial area (Kenya) contained Hg, Pb, Cr, Cd, Tl, and Ni. Urban mosquitoes and filamentous green algae can play a role of metal biomonitoring in wastewater. The possibility of urban mosquitoes transferring the heavy metals to their hosts when sucking blood should be investigated.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3638 ◽  
Author(s):  
Ellen E. Strong ◽  
Lee Ann Galindo ◽  
Yuri I. Kantor

The genusCleafrom SE Asia is from one of only two unrelated families among the megadiverse predatory marine Neogastropoda to have successfully conquered continental waters. While little is known about their anatomy, life history and ecology, interest has grown exponentially in recent years owing to their increasing popularity as aquarium pets. However, the systematic affinities of the genus and the validity of the included species have not been robustly explored. Differences in shell, operculum and radula characters support separation ofCleaas presently defined into two distinct genera:Clea, for the type speciesClea nigricansand its allies, andAnentomeforClea helenaand allies. A five-gene mitochondrial (COI, 16S, 12S) and nuclear (H3, 28S) gene dataset confirms the placement ofAnentomeas a somewhat isolated offshoot of the family Nassariidae and sister to the estuarineNassodonta. Anatomical data corroborate this grouping and, in conjunction with their phylogenetic placement, support their recognition as a new subfamily, the Anentominae. The assassin snailAnentome helena, a popular import through the aquarium trade so named for their voracious appetite for other snails, is found to comprise a complex of at least four species. None of these likely represents trueAnentome helenadescribed from Java, including a specimen purchased through the aquarium trade under this name in the US and one that was recently found introduced in Singapore, both of which were supported as conspecific with a species from Thailand. The introduction ofAnentome“helena” through the aquarium trade constitutes a significant threat to native aquatic snail faunas which are often already highly imperiled. Comprehensive systematic revision of this previously unrecognized species complex is urgently needed to facilitate communication and manage this emerging threat.


Zootaxa ◽  
2008 ◽  
Vol 1898 (1) ◽  
pp. 1-33 ◽  
Author(s):  
M. W. GATES

Khamul n. gen., a distinctive eurytomid in the subfamily Eurytominae is described from the Neotropics based upon the type species, K. erwini, n. sp. A hypothesis of its phylogenetic placement within Eurytominae is presented, and four new species are described: K. erwini, K. gothmogi, K. lanceolatus, and K. tolkeini. Diagnostic features are included to distincguish this taxon from other eurytomines and a key to species presented. Its biology is unknown, but label data indicate walking stick eggs (Prisopus sp.; Phasmatodea: Prisopodidae) as a possible host.


2015 ◽  
Vol 122 ◽  
pp. 399-405 ◽  
Author(s):  
Michele Munk ◽  
Humberto M. Brandão ◽  
Sophie Nowak ◽  
Ludovic Mouton ◽  
Juliana C. Gern ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document