scholarly journals Functional connectivity between prefrontal cortex and striatum estimated by phase locking value

2016 ◽  
Vol 10 (3) ◽  
pp. 245-254 ◽  
Author(s):  
Yan Zhang ◽  
Xiaochuan Pan ◽  
Rubin Wang ◽  
Masamichi Sakagami
2018 ◽  
Vol 22 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Kaitlyn Casimo ◽  
Fabio Grassia ◽  
Sandra L. Poliachik ◽  
Edward Novotny ◽  
Andrew Poliakov ◽  
...  

Prior studies of functional connectivity following callosotomy have disagreed in the observed effects on interhemispheric functional connectivity. These connectivity studies, in multiple electrophysiological methods and functional MRI, have found conflicting reductions in connectivity or patterns resembling typical individuals. The authors examined a case of partial anterior corpus callosum connection, where pairs of bilateral electrocorticographic electrodes had been placed over homologous regions in the left and right hemispheres. They sorted electrode pairs by whether their direct corpus callosum connection had been disconnected or preserved using diffusion tensor imaging and native anatomical MRI, and they estimated functional connectivity between pairs of electrodes over homologous regions using phase-locking value. They found no significant differences in any frequency band between pairs of electrodes that had their corpus callosum connection disconnected and those that had an intact connection. The authors’ results may imply that the corpus callosum is not an obligatory mediator of connectivity between homologous sites in opposite hemispheres. This interhemispheric synchronization may also be linked to disruption of seizure activity.


Author(s):  
Naishi Feng ◽  
Fo Hu ◽  
Hong Wang ◽  
Bin Zhou

Decoding brain intention from noninvasively measured neural signals has recently been a hot topic in brain-computer interface (BCI). The motor commands about the movements of fine parts can increase the degrees of freedom under control and be applied to external equipment without stimulus. In the decoding process, the classifier is one of the key factors, and the graph information of the EEG was ignored by most researchers. In this paper, a graph convolutional network (GCN) based on functional connectivity was proposed to decode the motor intention of four fine parts movements (shoulder, elbow, wrist, hand). First, event-related desynchronization was analyzed to reveal the differences between the four classes. Second, functional connectivity was constructed by using synchronization likelihood (SL), phase-locking value (PLV), H index (H), mutual information (MI), and weighted phase-lag index (WPLI) to acquire the electrode pairs with a difference. Subsequently, a GCN and convolutional neural networks (CNN) were performed based on functional topological structures and time points, respectively. The results demonstrated that the proposed method achieved a decoding accuracy of up to 92.81% in the four-class task. Besides, the combination of GCN and functional connectivity can promote the development of BCI.


2018 ◽  
Vol 44 (suppl_1) ◽  
pp. S203-S203
Author(s):  
Yong Sik Kim ◽  
In Won Chung ◽  
Hee Yeong Jung ◽  
Tak Youn ◽  
Se Hyun Kim ◽  
...  

2016 ◽  
Vol 116 (4) ◽  
pp. 1840-1847 ◽  
Author(s):  
Ahmad Alhourani ◽  
Thomas A. Wozny ◽  
Deepa Krishnaswamy ◽  
Sudhir Pathak ◽  
Shawn A. Walls ◽  
...  

Mild traumatic brain injury (mTBI) leads to long-term cognitive sequelae in a significant portion of patients. Disruption of normal neural communication across functional brain networks may explain the deficits in memory and attention observed after mTBI. In this study, we used magnetoencephalography (MEG) to examine functional connectivity during a resting state in a group of mTBI subjects ( n = 9) compared with age-matched control subjects ( n = 15). We adopted a data-driven, exploratory analysis in source space using phase locking value across different frequency bands. We observed a significant reduction in functional connectivity in band-specific networks in mTBI compared with control subjects. These networks spanned multiple cortical regions involved in the default mode network (DMN). The DMN is thought to subserve memory and attention during periods when an individual is not engaged in a specific task, and its disruption may lead to cognitive deficits after mTBI. We further applied graph theoretical analysis on the functional connectivity matrices. Our data suggest reduced local efficiency in different brain regions in mTBI patients. In conclusion, MEG can be a potential tool to investigate and detect network alterations in patients with mTBI. The value of MEG to reveal potential neurophysiological biomarkers for mTBI patients warrants further exploration.


2020 ◽  
Vol 48 (7) ◽  
pp. 1-19
Author(s):  
Ryan T. Daley ◽  
Holly J. Bowen ◽  
Eric C. Fields ◽  
Angela Gutchess ◽  
Elizabeth A. Kensinger

Self-relevance effects are often confounded by the presence of emotional content, rendering it difficult to determine how brain networks functionally connected to the ventromedial prefrontal cortex (vmPFC) are affected by the independent contributions of self-relevance and emotion. This difficulty is complicated by age-related changes in functional connectivity between the vmPFC and other default mode network regions, and regions typically associated with externally oriented networks. We asked groups of younger and older adults to imagine placing emotional and neutral objects in their home or a stranger's home. An age-invariant vmPFC cluster showed increased activation for self-relevant and emotional content processing. Functional connectivity analyses revealed age × self-relevance interactions in vmPFC connectivity with the anterior cingulate cortex. There were also age × emotion interactions in vmPFC functional connectivity with the anterior insula, orbitofrontal gyrus, inferior frontal gyrus, and supramarginal gyrus. Interactions occurred in regions with the greatest differences between the age groups, as revealed by conjunction analyses. Implications of the findings are discussed.


2021 ◽  
pp. 216770262110164
Author(s):  
Pan Liu ◽  
Matthew R. J. Vandermeer ◽  
Ola Mohamed Ali ◽  
Andrew R. Daoust ◽  
Marc F. Joanisse ◽  
...  

Understanding the development of depression can inform etiology and prevention/intervention. Maternal depression and maladaptive patterns of temperament (e.g., low positive emotionality [PE] or high negative emotionality, especially sadness) are known to predict depression. Although it is unclear how these risks cause depression, altered functional connectivity (FC) during negative-emotion processing may play an important role. We investigated whether maternal depression and age-3 emotionality predicted FC during negative mood reactivity in never-depressed preadolescents and whether these relationships were augmented by early-life stress. Maternal depression predicted decreased medial prefrontal cortex (mPFC)–amygdala and mPFC–insula FC but increased mPFC–posterior cingulate cortex (PCC) FC. PE predicted increased dorsolateral prefrontal cortex–amygdala FC, whereas sadness predicted increased PCC-based FC in insula, orbitofrontal cortex, and anterior cingulate cortex (ACC). Sadness was more strongly associated with PCC–insula and PCC–ACC FC as early stress increased. Findings indicate that early depression risks may be mediated by FC underlying negative-emotion processing.


Sign in / Sign up

Export Citation Format

Share Document