Synergy analysis on the heat dissipation performance of a battery pack under air cooling

Ionics ◽  
2020 ◽  
Vol 26 (11) ◽  
pp. 5575-5584
Author(s):  
Yi Yang ◽  
Xiaoming Xu ◽  
Yangjun Zhang ◽  
Hao Hu ◽  
Chen Li
2018 ◽  
Vol 42 (12) ◽  
pp. 3823-3836 ◽  
Author(s):  
Xu Xiaoming ◽  
Tang Wei ◽  
Fu Jiaqi ◽  
Hu Donghai ◽  
Sun Xudong

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2956 ◽  
Author(s):  
Xiongbin Peng ◽  
Xujian Cui ◽  
Xiangping Liao ◽  
Akhil Garg

An effective battery thermal management system (BTMS) is essential to ensure that the battery pack operates within the normal temperature range, especially for multi-cell batteries. This paper studied the optimal configuration of an air-cooling (AC) system for a cylindrical battery pack. The thermal parameters of the single battery were measured experimentally. The heat dissipation performance of a single battery was analyzed and compared with the simulation results. The experimental and simulation results were in good agreement, which proves the validity of the computational fluid dynamics (CFD) model. Various schemes with different battery arrangements, different positions of the inlet and outlet of the cooling system and the number of inlets and outlets were compared. The results showed that an arrangement that uses a small length-width ratio is more conducive to promoting the performance of the cooling system. The inlet and outlet configuration of the cooling system, which facilitates fluid flow over most of the battery pack over shorter distances is more beneficial to battery thermal management. The configuration of a large number of inlets and outlets can facilitate more flexible adjustment of the fluid flow state and can slow down battery heating to a greater extent.


2013 ◽  
Vol 579-580 ◽  
pp. 568-572
Author(s):  
Da Guo Ma ◽  
Xin Bo Jiang

The structure and composition of the air-cooled high speed motorized spindle for wood-working machine and some features relative to the metal cutting motorized spindle are introduced briefly. Then the main heat sources and heat dissipation mechanism of the air-cooled motorized spindle are thoroughly analyzed, finite element model of the air-cooled motorized spindle is built, the motorized spindles temperature distribution under thermal steady state and the influence of speed are analyzed. The results show that air cooling relative to the water or oil cooling has many advantages and reasonable heat dissipation structure design of air-cooled motorized spindle could meet the requirements of the high-speed motorized spindle for wood-working machine.


2021 ◽  
Vol 38 (11) ◽  
pp. 118201
Author(s):  
Jianglong Du ◽  
Haolan Tao ◽  
Yuxin Chen ◽  
Xiaodong Yuan ◽  
Cheng Lian ◽  
...  

Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.


2021 ◽  
Author(s):  
Xianguang Tan ◽  
Yongzhan He ◽  
Bin Liu ◽  
Jiang Yu ◽  
Ahuja Nishi ◽  
...  

Abstract With the accelerated application of cloud computing and artificial intelligence, the computing power and power consumption of chips are greatly enhanced, which brings severe challenges to heat dissipation. Based on this, Baidu has adopted advanced phase change cooling technology and successfully developed an innovative 3dvc air cooling scheme for AI server system. This paper introduces the design, test and verification of the innovative scheme in detail. The results show that the scheme can reduce the GPU temperature by more than 5 °C compared with the traditional heat pipe cooling scheme, save 30%+ of the fan power consumption, and achieve good cooling and energy saving effect.


Sign in / Sign up

Export Citation Format

Share Document