Pulse electrodeposition and nanoindentation test of ZrO2/Ni nanocomposite

2007 ◽  
Vol 22 (3) ◽  
pp. 462-465 ◽  
Author(s):  
Shui Ding ◽  
Kaifeng Zhang ◽  
Changli Wang
2010 ◽  
Vol 25 (5) ◽  
pp. 522-526
Author(s):  
Yu-Jun XUE ◽  
Hong-Bin LIU ◽  
Ming-Ming LAN ◽  
Hong-Biao HAN ◽  
Ji-Shun LI

2020 ◽  
Vol 982 ◽  
pp. 121-127
Author(s):  
Shuo Li ◽  
Qing Dong Zhang

A cylindrical indenter was designed to simulate the roller and 304 stainless steel / Q235A carbon steel plate with different roughness were bonded together. The interfacial bonding behavior was investigated by SEM, ultrasonic “C” scanning detection and nanoindentation test. The result reveal that with the increase of contact pressure between interfaces, the atoms of dissimilar metals begin to diffuse across interfaces in some regions, then form island-like bonding regions, and eventually extend to the whole interface. There are no obvious cracks on the surface of stainless steel and carbon steel after deformation. The cold roll-bonding mechanism of stainless steel and carbon steel is that elements on both sides of the interface diffuse and form a shallow diffusion layer under pressure to ensure the joint strength, and the joint bonding strength is greater than the strength of carbon steel matrix. In addition, the surface morphology of base metal has a great influence on the interfacial bonding quality. The higher surface roughness values increases the hardening degree of rough peak, which makes real contact area difficult to increase and reduce the interfacial bonding quality.


2021 ◽  
Vol 866 ◽  
pp. 158987
Author(s):  
M. Ramaprakash ◽  
Y. Deepika ◽  
C. Balamurugan ◽  
N. Nagaganapathy ◽  
R. Sekar ◽  
...  

2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2000 ◽  
Vol 649 ◽  
Author(s):  
G. Feng ◽  
A.H.W. Ngan

ABSTRACTDuring the unloading segment of nanoindentation, time dependent displacement (TDD) accompanies elastic deformation. Consequently the modulus calculated by the Oliver-Pharr scheme can be overestimated. In this paper we present evidences for the influence of the measured modulus by TDD. A modification method is also presented to correct for the effects of TDD by extrapolating the TDD law in the holding process to the beginning of the unloading process. Using this method, the appropriate holding time and unloading rate can be estimated for nanoindentation test to minimise the effects of TDD. The elastic moduli of three materials computed by the modification method are compared with the results without considering the TDD effects.


2009 ◽  
Vol 25 (8) ◽  
pp. 634-638 ◽  
Author(s):  
S. Mohan ◽  
N. Rajasekaran

2001 ◽  
Vol 36 (3-4) ◽  
pp. 607-615 ◽  
Author(s):  
D.D Shivagan ◽  
P.M Shirage ◽  
N.V Desai ◽  
L.A Ekal ◽  
S.H Pawar

2015 ◽  
Vol 33 (2) ◽  
pp. 348-355 ◽  
Author(s):  
Konrad Perzyński ◽  
Radosław Wiatr ◽  
Łukasz Madej

AbstractThe developed numerical model of a local nanoindentation test, based on the digital material representation (DMR) concept, has been presented within the paper. First, an efficient algorithm describing the pulsed laser deposition (PLD) process was proposed to realistically recreate the specific morphology of a nanolayered material in an explicit manner. The nanolayered Ti/TiN composite was selected for the investigation. Details of the developed cellular automata model of the PLD process were presented and discussed. Then, the Ti/TiN DMR was incorporated into the finite element software and numerical model of the nanoindentation test was established. Finally, examples of obtained results presenting capabilities of the proposed approach were highlighted.


Sign in / Sign up

Export Citation Format

Share Document