Effects of heating and hot extrusion process on microstructure and properties of inconel 625 alloy

2016 ◽  
Vol 31 (6) ◽  
pp. 1368-1376 ◽  
Author(s):  
Dexue Liu ◽  
Xiaowei Cheng ◽  
Xiao Zhang ◽  
Yutian Ding
2019 ◽  
Vol 37 ◽  
pp. 119-126
Author(s):  
Yong Hu ◽  
Xingmao Wang ◽  
Yubi Gao ◽  
Jiayu Xu ◽  
Yutian Ding

2020 ◽  
Vol 73 (11) ◽  
pp. 2795-2805
Author(s):  
Zhi Jia ◽  
Xuan Sun ◽  
Jinjin Ji ◽  
Yanjiang Wang ◽  
Baolin Wei ◽  
...  

Author(s):  
Diego de Medeiros Barbosa ◽  
Leticia Helena Guimarães Alvarinho ◽  
Aristides Magri ◽  
Daniel Suyama

Author(s):  
A. Damodar Reddy ◽  
P.N. Karthikeyan ◽  
S. Krishnaraj ◽  
Adarsh Ajayan ◽  
K. Sunil Kumar Reddy ◽  
...  

2020 ◽  
Vol 39 (1) ◽  
pp. 340-350
Author(s):  
Mingjing Wang ◽  
Song Zeng ◽  
Huihui Zhang ◽  
Ming Zhu ◽  
Chengxin Lei ◽  
...  

AbstractCorrosion behaviors of 316 stainless steel (316 ss) and Inconel 625 alloy in molten NaCl–KCl–ZnCl2 at 700°C and 900°C were investigated by immersion tests and electrochemical methods, including potentiodynamic polarization and electrochemical impedance spectroscopy. X-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy were used to analyze the phases and microstructures of the corrosion products. Inconel 625 alloy and 316 ss exhibited high corrosion rates in molten chlorides, and the corrosion rates of these two alloys accelerated when the temperature increased from 700°C to 900°C. The results of the electrochemical tests showed that both alloys exhibited active corrosion in chloride molten salt, and the current density of 316 ss in chloride molten salt at 700°C was 2.756 mA/cm−2, which is about three times the value for Inconel 625 alloy; and the values of the charge transfer resistance (Rt) for Inconel 625 were larger than those for 316 ss. The corrosion of these two alloys is owing to the preferred oxidation of Cr in chloride molten salt, and the corrosion layer was mainly ZnCr2O4 which was loose and porous and showed poor adherence to metal.


Author(s):  
Xingmao Wang ◽  
Yutian Ding ◽  
Yubi Gao ◽  
Yuanjun Ma ◽  
Jianjun Chen ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 663
Author(s):  
Thomas Borgert ◽  
Werner Homberg

Modern forming processes often allow today the efficient production of complex parts. In order to increase the sustainability of forming processes it would be favorable if the forming of workpieces becomes possible using production waste. At the Chair of Forming and Machining Technology of the Paderborn University (LUF) research is presently conducted with the overall goal to produce workpieces directly from secondary aluminum (e.g., powder and chips). Therefore, friction-based forming processes like friction spinning (or cognate processes) are used due to their high efficiency. As a pre-step, the production of semi-finished parts was the subject of accorded research work at the LUF. Therefore, a friction-based hot extrusion process was used for the full recycling or rework of aluminum chips into profiles. Investigations of the recycled semi-finished products show that they are comparable to conventionally produced semi-finished products in terms of dimensional stability and shape accuracy. An analysis of the mechanical properties of hardness and tensile strength shows that a final product with good and homogeneously distributed properties can be produced. Furthermore, significant correlations to the friction spinning process could be found that are useful for the above-mentioned direct part production from secondary aluminum.


2015 ◽  
Vol 817 ◽  
pp. 531-537 ◽  
Author(s):  
Tao Tang ◽  
Yi Chuan Shao ◽  
Da Yong Li ◽  
Ying Hong Peng

In order to study the influence of extrusion process on texture development of alloys, numerical simulation methods were used to simulate the round and shape extrusion process and deformation texture. Extrusion of Mg-Y magnesium alloy was carried out at the temperature of 673K with different ram speeds to verify the simulation results. Instead of using the Lagrangian FE method, the Arbitrary Lagrangian-Eulerian (ALE) method was employed in this study so that a more accurate description of the steady-state extrusion process can be achieved. By obtaining strain histories of specified material tracer particles, the coupling of deformation and crystal plasticity theory was applied to simulate the texture evolution in hot extrusion. The results showed that the texture simulation corresponded well with the experimental ones. The study proposes a method to analyze the steady-state extrusion process and texture evolution, and can be used as a useful tool in optimizing the extrusion process.


Sign in / Sign up

Export Citation Format

Share Document