Mechanical Behavior of Laser Powder Bed Fusion Processed Inconel 625 Alloy

Author(s):  
K. S. N. Satish Idury ◽  
V. Chakkravarthy ◽  
R. L. Narayan
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Thibaut De Terris ◽  
Olivier Castelnau ◽  
Zehoua Hadjem-Hamouche ◽  
Halim Haddadi ◽  
Vincent Michel ◽  
...  

The microstructures induced by the laser-powder bed fusion (L-PBF) process have been widely investigated over the last decade, especially on austenitic stainless steels (AISI 316L) and nickel-based superalloys (Inconel 718, Inconel 625). However, the conditions required to initiate recrystallization of L-PBF samples at high temperatures require further investigation, especially regarding the physical origins of substructures (dislocation densities) induced by the L-PBF process. Indeed, the recrystallization widely depends on the specimen substructure, and in the case of the L-PBF process, the substructure is obtained during rapid solidification. In this paper, a comparison is presented between Inconel 625 specimens obtained with different laser-powder bed fusion (L-PBF) conditions. The effects of the energy density (VED) values on as-built and heat-under microstructures are also investigated. It is first shown that L-PBF specimens created with high-energy conditions recrystallize earlier due to a larger density of geometrically necessary dislocations. Moreover, it is shown that lower energy densities offers better tensile properties for as-built specimens. However, an appropriate heat treatment makes it possible to homogenize the tensile properties.


2020 ◽  
Vol 769 ◽  
pp. 138500 ◽  
Author(s):  
Giulio Marchese ◽  
Simone Parizia ◽  
Masoud Rashidi ◽  
Abdollah Saboori ◽  
Diego Manfredi ◽  
...  

Author(s):  
Felix Schmeiser ◽  
Erwin Krohmer ◽  
Christian Wagner ◽  
Norbert Schell ◽  
Eckart Uhlmann ◽  
...  

AbstractLaser powder bed fusion is an additive manufacturing process that employs highly focused laser radiation for selective melting of a metal powder bed. This process entails a complex heat flow and thermal management that results in characteristic, often highly textured microstructures, which lead to mechanical anisotropy. In this study, high-energy X-ray diffraction experiments were carried out to illuminate the formation and evolution of microstructural features during LPBF. The nickel-base alloy Inconel 625 was used for in situ experiments using a custom LPBF system designed for these investigations. The diffraction patterns yielded results regarding texture, lattice defects, recrystallization, and chemical segregation. A combination of high laser power and scanning speed results in a strong preferred crystallographic orientation, while low laser power and scanning speed showed no clear texture. The observation of a constant gauge volume revealed solid-state texture changes without remelting. They were related to in situ recrystallization processes caused by the repeated laser scanning. After recrystallization, the formation and growth of segregations were deduced from an increasing diffraction peak asymmetry and confirmed by ex situ scanning transmission electron microscopy. Graphical Abstract


2017 ◽  
Vol 48 (11) ◽  
pp. 5547-5558 ◽  
Author(s):  
Eric A. Lass ◽  
Mark R. Stoudt ◽  
Maureen E. Williams ◽  
Michael B. Katz ◽  
Lyle E. Levine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document