Functional characterization of full-length and 5′ deletion fragments of Citrus sinensis-derived constitutive promoters in Nicotiana benthamiana

2020 ◽  
Vol 56 (3) ◽  
pp. 280-289 ◽  
Author(s):  
L. Erpen-Dalla Corte ◽  
B. M. J. Mendes ◽  
F. A. A. Mourão Filho ◽  
J. W. Grosser ◽  
M. Dutt
2013 ◽  
Vol 142-143 ◽  
pp. 447-457 ◽  
Author(s):  
Afonso C.D. Bainy ◽  
Akira Kubota ◽  
Jared V. Goldstone ◽  
Roger Lille-Langøy ◽  
Sibel I. Karchner ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 524
Author(s):  
Bingqi Wu ◽  
Zhiting Chen ◽  
Xiaohui Xu ◽  
Ronghua Chen ◽  
Siwei Wang ◽  
...  

Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.


2005 ◽  
Vol 3 (5) ◽  
pp. 1064-1073 ◽  
Author(s):  
K. BRUNO ◽  
D. VOLKEL ◽  
B. PLAIMAUER ◽  
G. ANTOINE ◽  
S. PABLE ◽  
...  

2009 ◽  
Vol 66 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Luca Zinzula ◽  
Francesca Esposito ◽  
Elke Mühlberger ◽  
Martina Trunschke ◽  
Dominik Conrad ◽  
...  

Viruses ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 334 ◽  
Author(s):  
Akhil Chameettachal ◽  
Vineeta Pillai ◽  
Lizna Ali ◽  
Fathima Pitchai ◽  
Mustafa Ardah ◽  
...  

2020 ◽  
Vol 11 (6) ◽  
pp. 1495-1504 ◽  
Author(s):  
Flora Cimmino ◽  
Marianna Avitabile ◽  
Vito Alessandro Lasorsa ◽  
Lucia Pezone ◽  
Antonella Cardinale ◽  
...  

2019 ◽  
Vol 20 (23) ◽  
pp. 5929
Author(s):  
Lin ◽  
Cai ◽  
Du ◽  
Zhang ◽  
Xu ◽  
...  

: Tea (Camellia sinensis) is enriched with bioactive secondary metabolites, and is one of the most popular nonalcoholic beverages globally. Two tea reference genomes have been reported; however, the functional analysis of tea genes has lagged, mainly due to tea’s recalcitrance to genetic transformation and the absence of alternative high throughput heterologous expression systems. A full-length cDNA collection with a streamlined cloning system is needed in this economically important woody crop species. RNAs were isolated from nine different vegetative tea tissues, pooled, then used to construct a normalized full-length cDNA library. The titer of unamplified and amplified cDNA library was 6.89 × 106 and 1.8 × 1010 cfu/mL, respectively; the library recombinant rate was 87.2%. Preliminary characterization demonstrated that this collection can complement existing tea reference genomes and facilitate rare gene discovery. In addition, to streamline tea cDNA cloning and functional analysis, a binary vector (pBIG2113SF) was reengineered, seven tea cDNAs isolated from this library were successfully cloned into this vector, then transformed into Arabidopsis. One FL-cDNA, which encodes a putative P1B-type ATPase 5 (CsHMA5), was characterized further as a proof of concept. We demonstrated that overexpression of CsHMA5 in Arabidopsis resulted in copper hyposensitivity. Thus, our data demonstrated that this represents an efficient system for rare gene discovery and functional characterization of tea genes. The integration of a tea FL-cDNA collection with efficient cloning and a heterologous expression system would facilitate functional annotation and characterization of tea genes.


Sign in / Sign up

Export Citation Format

Share Document