Numerical analysis of the tip leakage flow field in a transonic axial compressor with circumferential casing treatment

2010 ◽  
Vol 19 (3) ◽  
pp. 198-205 ◽  
Author(s):  
G. Legras ◽  
N. Gourdain ◽  
Isabelle Trebinjac
Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Jichao Li ◽  
Feng Lin ◽  
Sichen Wang ◽  
Juan Du ◽  
Chaoqun Nie ◽  
...  

Circumferential single-groove casing treatment becomes an interesting topic in recent few years, because it is a good tool to explore the interaction between the groove and the flow in blade tip region. The stall margin improvement (SMI) as a function of the axial groove location has been found for some compressors, such a trend cannot be predicted by steady high-fidelity CFD simulations. Recent efforts show that to catch such a trend, multi-passage, unsteady flow simulations are needed as the stalling mechanism itself involves cross-passage flows and unsteady dynamics. This indicates a need to validate unsteady numerical simulation results. In this paper, an extensive experimental study of a total of fifteen single casing grooves in a low-speed axial compressor rotor is presented, the groove location varies from 0.4% to 98.3% of axial tip chord are tested. The unsteady pressure data both at casing and at the blade wake with different groove locations are measured and processed, including the movement of trajectory of tip leakage flow, the evolution of unsteadiness of tip leakage flow (UTLF), the unsteady spectrum signature during the stall process, and the outlet unsteady flow characteristic along the span. These data provide a case study for validation of the unsteady CFD results, and may be helpful for further interpretation on the stalling mechanism affected by circumferential casing grooves.


Author(s):  
Mingmin Zhu ◽  
Xiaoqing Qiang ◽  
Jinfang Teng

Slot-type casing treatment generally has a great potential of enhancing the operating range for tip-critical compressor rotors, however, with remarkable efficiency drop. Part I of this two-part paper was committed to develop a slot configuration with desired stall margin improvement and minimized efficiency loss. Steady simulation was carried out in a 1.5 transonic axial compressor stage at part design rotating speed. At this rotating speed this compressor stage operated at a subsonic condition and showed a rather narrow operating range, which needed to be improved badly. Flow fields analysis at peak efficiency and near stall point showed that the development of tip leakage vortex and resulting blockage near casing resulted in numerical stall. Three kinds of skewed slots with same rotor exposure and casing porosity were designed according to the tip flow field and some empirical strategies. Among three configurations, arc-curved skewed slot showed minimum peak efficiency drop with considerable stall margin improvement. Then rotor exposure and casing porosity were varied based on the original arc-curved skewed slot, with a special interest in detecting their impact on the compressor stability and overall efficiency. Result showed that smaller rotor exposure and casing porosity leaded to less efficiency drop. But meanwhile, effectiveness of improving compressor stability was weakened. The relation between efficiency drop and stall margin improvement fell on a smooth continuous curve throughout all slots configurations, indicating that the detrimental effect of casing treatment on compressor was inevitable. Flow analysis was carried out for cases of smooth casing and three arc-curved configurations at smooth casing near stall condition. The strength of suction/injection, tip leakage flow behavior and removal of blockage near casing were detailed examined. Larger rotor tip exposure and slots number contributed to stronger injection flow. The loss generated within the mixing process of injection flow with main flow and leakage flow is the largest source of entropy increase. Further loss mechanisms were interpreted at eight axial cuts, which were taken through the blade row and slots to show the increase in entropy near tip region. Entropy distributions manifested that loss generations with smooth casing were primarily ascribed to low-momentum tip leakage flow/vortex and suction surface separation at leading edge. CU0 slot, the arc-curved slots with 50% rotor tip exposure, was capable of suppressing the suction surface separation loss. Meanwhile, accelerated tip leakage flow brought about additional loss near casing and pressure surface. Upstream high entropy flow would be absorbed into the rear portion of slots repeatedly, resulting in further loss.


Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang

A low speed axial compressor with casing treatment of axial slots was numerically investigated. Time-accurate numerical calculations were performed to simulate unsteady flow in the rotor tip region and the effects of casing treatment on the flow. Since the compressor rotor had a large tip clearance, it was found that the tip leakage flow had an inherent unsteady feature that was not associated with rotor rotation. The unsteadiness of the tip leakage flow was induced by changes in the blade loading due to the pressure distribution formed by the tip leakage flow. This characteristic is called rotating instability or self-induced unsteadiness. The frequency of the flow oscillation was found to decrease as the flow rate was reduced. On the other hand, as expected, the operating range was improved by casing treatment, as shown by calculations in good agreement with the experimentally measured data. The unsteadiness of the tip leakage flow was alleviated by the casing treatment. The interaction between the flow in the tip region and the re-circulated flow through the axial slots was observed in detail. The removal and injection of flow through the axial slots were responsible not only for the extension of the operating range but also for the alleviation of the unsteadiness. Analyses of instantaneous flow fields explained the mechanism of the interaction between the casing treatment and the unsteady oscillation of the tip leakage flow. Furthermore, the effects of changes in the amount of re-circulation and the location of the removal and injection flow on the unsteadiness of the tip leakage flow were examined.


Author(s):  
Limin Gao ◽  
Ruiyu Li ◽  
Fang Miao ◽  
Yutong Cai

Contra-rotating axial compressor/fan (CRAC) is a promising technology to meet the future goals aircraft industry. Massive time accurate simulations are performed to investigate rotating stall in CRAC containing two counter-rotating rotors. Particularly, the back pressure increasing with a very small step to avoid missing flow field transition from stability to instability. Due to the canceling of the stator, the instability of downstream rotor is more stronger. The present studies mostly focus on the downstream rotor. The tip leakage flow field is analyzed in detail under near stall condition, which indicates that a secondary leakage flow plays an important role in the unsteadiness of CRAC's unsteady flow field. The frequency analysis in the tip clearance of downstream rotor under multiple near stall conditions captured the transition of the second harmonic frequency which can be used as stall inception signal. Moreover, the rotating stall onset process in real CRAC is simulated on the numerical stall.


Author(s):  
X Lu ◽  
J Zhu ◽  
W Chu

This article investigates the flow field at the tip region of compressor rotor. In particular, the effect of stepped tip gaps on the performance and flow field of axial compressor was reviewed using experimental and computational methods. An axial compressor rotor with no inlet guide vanes was tested under subsonic conditions. A parametric study of clearance levels and step profiles was performed using eight different casing geometries. This study was aimed at comparing compressor performance in specified configurations. The experimental results showed that the inclusion of stepped tip gaps with the small clearance level gave increased pressure ratio, efficiency, and stall margin throughout the mass flow range at both speeds. However, when using medium and large clearance levels, the benefits of stepped tip gaps were not noticed for all rotor operating conditions when compared with the baseline case. Steady-state Navier-Stokes analyses were performed for cases involving small clearance level and stepped tip gap geometries. They highlighted the mechanisms associated with performance improvement. The numerical procedure correctly predicted the overall effects of stepped tip gaps. Detailed numerical simulation results showed that the interaction between the stepped groove flow and the blade passage flow could entrain the blockage produced by upstream tip leakage flow into the tip gap of adjacent blades of the compressor rotor. It is through this process that stepped tip gaps can help in dissipating blockage that was caused by upstream tip leakage flow. Thus, the path and extent of the blockage in the tip region are altered to increase the passage through-flow area, and so, the rotor performance can be improved.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1445
Author(s):  
Moru Song ◽  
Hong Xie ◽  
Bo Yang ◽  
Shuyi Zhang

This paper studies the influence of tip clearance on the flow characteristics related to the performance. Based on full-passage numerical simulation with experimental validation, several clearance models are established and the performance curves are obtained. It is found that there exists an optimum clearance for the stable working range. By analyzing the flow field in tip region, the role of the tip leakage flow is illustrated. In the zero-clearance model, the separation and blockage along the suction side is the main reason for rotating stall. As the tip clearance is increased to the optimum value, the separation is suppressed by the tip leakage flow. However, with the continuing increasing of the tip clearance, the scale and strength of the tip clearance vortex is increased correspondingly. When the tip clearance is larger than the optimum value, the tip clearance vortex gradually dominates the flow field in the tip region, which can increase the unsteadiness in the tip region and trigger forward spillage in stall onset.


Author(s):  
Shraman Goswami ◽  
Ashima Malhotra

Abstract Performance of an axial compressor rotor depends largely on the tip leakage flow. Tip leakage flow results in tip leakage vortex which is a source of loss. This has an impact on the compressor efficiency as well as stall margin. A lot of work has been done to understand the tip leakage flow and controlling the same. Active and passive stall margin improvement methods mainly target the tip leakage vortex. In the current study, numerical investigations are carried out to understand flow fields near tip region of rotors. The blade tip designed to have a tip gap as sine and cosine waves (single and double waves). Numerical methodology is validated with NASA Rotor37 test results. The performance parameters of the rotors with modified tip gap shapes are compared with constant tip clearance rotor. A detailed flow field investigation is presented to compare the tip flow structure and its impact on overall performance of the compressor.


Sign in / Sign up

Export Citation Format

Share Document