The Development of Top-Hat Flow Field in a Circular Symmetrical Subsonic Nozzle

2019 ◽  
Vol 28 (5) ◽  
pp. 975-983
Author(s):  
Han Zhang ◽  
Li Jia ◽  
Lishui Cui ◽  
Chunhui Li
Keyword(s):  
2019 ◽  
Vol 213 ◽  
pp. 02033
Author(s):  
Tomáš Jelínek ◽  
Erik Flídr ◽  
Martin Němec ◽  
Jan Šimák

A new test facility was built up as a part of a closed-loop transonic wind tunnel in VZLU´s High-speed Aerodynamics Department. The wind tunnel is driven by a twelve stage radial compressor and Mach and Reynolds numbers can be changed by the compressor speed and by the total pressure in the wind tunnel loop by a set of vacuum pumps, respectively. The facility consists of an axisymmetric subsonic nozzle with an exit diameter de = 100 mm. The subsonic nozzle is designed for regimes up to M = 1 at the nozzle outlet. At the nozzle inlet there is a set of a honeycomb and screens to ensure the flow stream laminar at the outlet of the nozzle. The subsonic nozzle can be supplemented with a transonic slotted nozzle or a supersonic rigid nozzle for transonic and supersonic outlet Mach numbers. The probe is fixed in a probe manipulator situated downstream of the nozzle and it ensures a set of two perpendicular angles in a wide range (±90°). The outlet flow field was measured through in several axial distances downstream the subsonic nozzle outlet. The total pressure and static pressure was measured in the centreline and the total pressure distribution in the vertical and horizontal plane was measured as well. Total pressure fluctuations in the nozzle centreline were detected by a FRAP probe. From the initial flow measurement in a wide range of Mach numbers the best location for probe calibration was chosen. The flow field was found to be suitable for probe calibration.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


1994 ◽  
Vol 4 (4) ◽  
pp. 451-471 ◽  
Author(s):  
Nobuyuki Yatsuyanagi ◽  
Hiroshi Sakamoto ◽  
Kazuo Sato

Sign in / Sign up

Export Citation Format

Share Document