Mineralogy and geochemistry of fine-grained Dahab stream sediments, Southeastern Sinai, Egypt: emphasis on the intergrowths of Fe–Ti oxides

2021 ◽  
Author(s):  
Adel A. Surour ◽  
Ahmed. M. A. El-Kammar ◽  
Ebtisam H. Arafa ◽  
Hala M. Korany
Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 789-804 ◽  
Author(s):  
Elizaveta Kovaleva ◽  
Håkon O. Austrheim ◽  
Urs S. Klötzli

Abstract. In this study, we report the occurrence of zircon coronae textures in metapelitic granulites of the Ivrea–Verbano Zone. Unusual zircon textures are spatially associated with Fe–Ti oxides and occur as (1) vermicular-shaped aggregates 50–200 µm long and 5–20 µm thick and as (2) zircon coronae and fine-grained chains, hundreds of micrometers long and ≤ 1 µm thick, spatially associated with the larger zircon grains. Formation of such textures is a result of zircon precipitation during cooling after peak metamorphic conditions, which involved: (1) decomposition of Zr-rich ilmenite to Zr-bearing rutile, and formation of the vermicular-shaped zircon during retrograde metamorphism and hydration; and (2) recrystallization of Zr-bearing rutile to Zr-depleted rutile intergrown with quartz, and precipitation of the submicron-thick zircon coronae during further exhumation and cooling. We also observed hat-shaped grains that are composed of preexisting zircon overgrown by zircon coronae during stage (2). Formation of vermicular zircon (1) preceded ductile and brittle deformation of the host rock, as vermicular zircon is found both plastically and cataclastically deformed. Formation of thin zircon coronae (2) was coeval with, or immediately after, brittle deformation as coronae are found to fill fractures in the host rock. The latter is evidence of local, fluid-aided mobility of Zr. This study demonstrates that metamorphic zircon can nucleate and grow as a result of hydration reactions and mineral breakdown during cooling after granulite-facies metamorphism. Zircon coronae textures indicate metamorphic reactions in the host rock and establish the direction of the reaction front.


1986 ◽  
Vol 23 (11) ◽  
pp. 1662-1672 ◽  
Author(s):  
L. Giusti

The morphology of a large number of gold grains from stream sediments of the North Saskatchewan River and the Athabasca River was studied, together with the partitioning of the placer gold between various size fractions.Two major morphological varieties of gold were observed: (1) flaky, scaly gold, with folded and hammered edges, and with crystals or crystal faces still visible on the surface; and (2) "sandwiched," droplike particles, sometimes toroidal. About 5% of both types of gold were found to be coated with "new," secondary gold.The size of the majority of the gold grains studied varies between 0.500 and 0.010 mm. The most frequent size range in the North Saskatchewan River is 0.125–0.250 mm, whereas in the Athabasca River it is 0.063–0.125 mm. An important fraction of the gold from both rivers is smaller than 0.063 mm.The average Corey shape factor (CSF) of the gravity-recovered gold increases as the particle size decreases, whereas the gold grains lost to the tailings indicate very low average shape factors (i.e., high degree of flattening). This apparent increase in CSF for the smallest fractions recovered when using mechanical techniques is due to the fact that the flaky gold particles are more difficult to recover than the more spherical ones. Moreover, the presence of a gold-rich rim on all the gold grains increases their hydrophobicity.The sampling procedure to be adopted in Alberta and, more generally, in glaciated terrains is discussed. In particular, the use of the −63 μm fraction for routine sampling of stream sediments is suggested.


Author(s):  
Ian Parsons

ABSTRACTThe layered syenites in the Klokken intrusion consist of horizons of fine-grained, granular-textured ferroaugite syenite showing inverted cryptic layering, interleaved with coarser, laminated, more fractionated hedenbergite syenite. Distribution of hydrous mafic phases indicates build-up of water in parallel with magmatic evolution, and druses and pegmatitic segregations in the laminated syenites are evidence for late development of a gas phase. Feldspar bulk compositions are close to the minimum on the Ab-Or binary, with An decreasing from An7 to An1 with fractionation, and normal zoning in cryptoperthite crystals. Feldspars in granular syenites are transparent coherent cryptoperthites or braid microperthites; An-content is probably the main control of fine-perthite coarseness. Laminated syenite feldspars are turbid, coarse patch microperthites with rare relics of braid textures. This non-coherent coarsening was caused by interactions between feldspars and water entrapped at magmatic temperatures which was retained within the original lithologies to low subsolidus temperatures. Fe-Ti oxides reflect this water distribution, with regular trellis ilmenite-titanomagnetite intergrowths in less fractionated rocks and ragged granule exsolution in more advanced syenites. The sharp change in exsolution textures at granular-laminated syenite boundaries implies steep water-gradients within these interleaved rock types. Water was unable to penetrate the granular layers and did not circulate freely in the cooling intrusion.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 155 ◽  
Author(s):  
Miloš René

Oxide minerals (Nb–Ta-rich rutile, columbite-group minerals and W-bearing ixiolite) represent the most common host for Nb, Ta and Ti in high-F, high-P2O5 Li-mica granites and related rocks from the Geyersberg granite stock in the Krušné Hory/Erzgebirge Mts. batholith. This body forms a pipe like granite stock composed of fine- to middle-grained, porphyritic to equigranular high-F, high-P2O5 Li-mica granites, which contain up to 6 vol. % of topaz. Intrusive breccia’s on the NW margin of the granite stock are composed of mica schists and muscovite gneiss fragments enclosed in fine-grained aplitic and also topaz- and Li-mica-bearing granite. Columbite group minerals occur usually as euhedral to subhedral grains that display irregular or patched zoning. These minerals are represented by columbite-(Fe) with Mn/(Mn + Fe) ratio ranging from 0.07 to 0.15. The rare Fe-rich W-bearing ixiolite occurs as small needle-like crystals. The ixiolite is Fe-rich with relatively low Mn/(Mn + Fe) and Ta/(Ta + Nb) values (0.10–0.15 and 0.06–0.20, respectively). Owing to the high W content (19.8–34.9 wt. % WO3, 0.11–0.20 apfu), the sum of Nb + Ta in the ixiolite does not exceed 0.43 apfu. The Ti content is 1.7–5.7 wt. % TiO2 and Sn content is relatively low (0.3–4.1 wt. % SnO2).


Geomorphology ◽  
2017 ◽  
Vol 281 ◽  
pp. 13-30 ◽  
Author(s):  
Kristen R. Marra ◽  
Megan E. Elwood Madden ◽  
Gerilyn S. Soreghan ◽  
Brenda L. Hall

2017 ◽  
Author(s):  
Elizaveta Kovaleva ◽  
Håkon O. Austrheim ◽  
Urs S. Klötzli

Abstract. In this study, we report the occurrence of zircon coronae textures in metapelitic granulites of the Ivrea-Verbano Zone. Unusual zircon textures are spatially associated with Fe-Ti oxides and occur as (1) vermicular-shaped aggregates 50–200 µm long and 5–20 µm thick, and as (2) zircon coronae and fine-grained chains, hundreds of µm long and ≤ 1 µm thick, spatially associated with the larger zircon grains. Formation of such textures is a result of zircon precipitation during cooling after peak metamorphic conditions, which involved: (1) decomposition of Zr-rich ilmenite to Zr-bearing rutile and vermicular-shaped zircon during retrograde metamorphism and hydration; (2) recrystallization of Zr-bearing rutile to Zr-depleted rutile intergrown with quartz and submicron-thick zircon coronae during further exhumation and cooling. We also observed hat-shaped grains that are composed of preexisting zircon overgrown by zircon coronae during stage (2). Formation of vermicular zircon (1) preceded ductile and brittle deformation of the host rock, as vermicular zircon is found both plastically- and cataclastically-deformed. Formation of thin zircon coronae (2) was coeval with, or immediately after brittle deformation, as coronae are found to fill fractures in the host rock. The latter is evidence of local, fluid-aided mobility of Zr. This study demonstrates that metamorphic zircon can nucleate and grow as a result of hydration reactions and mineral breakdown during cooling after granulite-facies metamorphism. Zircon corona textures indicate metamorphic reactions in the host rock, and establishing the direction of the reaction front.


1995 ◽  
Vol 32 (9-10) ◽  
pp. 239-246 ◽  
Author(s):  
B. Herut ◽  
H. Hornung ◽  
N. Kress ◽  
M. D. Krom ◽  
M. Shirav

Concentrations of mercury, lead, copper, zinc, cadmium, iron and partially chromium, manganese, nickel and aluminium, were recorded in surface sediments at the lower reaches of 11 rivers from the Mediterranean coastal zone of Israel, during 1988-1993. Excluding the lower Kishon river, no major contamination was found at most of the stations when trace metal concentrations were normalized against iron concentrations (trace metal/iron ratios) and compared to levels recorded in stream sediments from the southern drainage basin of the Kishon river. Minor enrichments found in part of the rivers are attributed to land-based point sources of pollution. Variations in trace metal concentrations at the estuaries are related to high influx of fine-grained sediments transported by heavy floods during rainy winters, which later are resuspended and transported seaward by bottom currents.


Author(s):  
Richard S. Chemock

One of the most common tasks in a typical analysis lab is the recording of images. Many analytical techniques (TEM, SEM, and metallography for example) produce images as their primary output. Until recently, the most common method of recording images was by using film. Current PS/2R systems offer very large capacity data storage devices and high resolution displays, making it practical to work with analytical images on PS/2s, thereby sidestepping the traditional film and darkroom steps. This change in operational mode offers many benefits: cost savings, throughput, archiving and searching capabilities as well as direct incorporation of the image data into reports.The conventional way to record images involves film, either sheet film (with its associated wet chemistry) for TEM or PolaroidR film for SEM and light microscopy. Although film is inconvenient, it does have the highest quality of all available image recording techniques. The fine grained film used for TEM has a resolution that would exceed a 4096x4096x16 bit digital image.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Sign in / Sign up

Export Citation Format

Share Document