Trace metals in sediments at the lower reaches of Mediterranean coastal rivers, Israel

1995 ◽  
Vol 32 (9-10) ◽  
pp. 239-246 ◽  
Author(s):  
B. Herut ◽  
H. Hornung ◽  
N. Kress ◽  
M. D. Krom ◽  
M. Shirav

Concentrations of mercury, lead, copper, zinc, cadmium, iron and partially chromium, manganese, nickel and aluminium, were recorded in surface sediments at the lower reaches of 11 rivers from the Mediterranean coastal zone of Israel, during 1988-1993. Excluding the lower Kishon river, no major contamination was found at most of the stations when trace metal concentrations were normalized against iron concentrations (trace metal/iron ratios) and compared to levels recorded in stream sediments from the southern drainage basin of the Kishon river. Minor enrichments found in part of the rivers are attributed to land-based point sources of pollution. Variations in trace metal concentrations at the estuaries are related to high influx of fine-grained sediments transported by heavy floods during rainy winters, which later are resuspended and transported seaward by bottom currents.

1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (> 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


2021 ◽  
Author(s):  
Dominik Jaeger ◽  
Roland Stalder ◽  
Cristiano Chiessi ◽  
André Sawakuchi ◽  
Michael Strasser

<p>Trace metal concentrations and associated hydrous lattice point defects (OH defects) in quartz can help reveal its host rock’s crystallization history and are easily quantified using electron microprobe and infrared spectroscopy, respectively. These chemical impurities are preserved throughout the sedimentary cycle and thus lend themselves as tracers for sediment provenance analyses, particularly in settings where “traditional” provenance tools, e.g., thermochronology and heavy mineral analysis, are difficult due to factors like low mineral fertility and aggressive tropical weathering.</p><p>In this study, we apply this provenance analysis tool to detrital, sand-sized quartz grains from the Amazon River and its major tributaries, draining the Andean orogen as well as the Guiana- and Central Brazil Shields. Trace metal and OH defect concentrations from individual catchments are spread out over wide and mutually overlapping ranges of values. This means that each individual quartz grain cannot be unequivocally attributed to one catchment. However, evaluation of a statistically sound number of grains reveals that Andean quartz is, on average, richer in the trace metal aluminum (and Al-related OH defects) than quartz derived from one of the shield sources.</p><p>We evaluate our findings in the context of previous provenance studies on Amazon River sediments and discuss a potential future application of analyzing trace metals and OH defects in quartz in the offshore sediment record. Any past, major rearrangements in the Amazon watershed affecting the ratio of Andean vs. Shield-derived quartz grains should be detectable and our approach may therefore contribute to the reconstruction of Amazon drainage basin evolution.</p>


1987 ◽  
Vol 18 (4-5) ◽  
pp. 301-312 ◽  
Author(s):  
P. Sandén ◽  
S. Karlsson ◽  
U. Lohm

Variations in metal concentrations in a heavily polluted stream receiving acidic leachates from an old mine tailings deposit are analysed from a hydrological perspective. From an extensive data material, collected during three years, the variations in concentrations of four metals (copper, zinc, cadmium and lead) are discussed. The deposit is the principal source for these metals in the watershed. The variation in metal concentrations in the vicinity of the deposit can to a large extent be explained by simple dilution of contaminated water with uncontaminated water from the surrounding area. Further downstream the deposit, other processes become increasingly important for the metal concentrations in the water bodies.


2011 ◽  
Vol 11 (5) ◽  
pp. 14747-14776
Author(s):  
T. Moreno ◽  
X. Querol ◽  
A. Alastuey ◽  
C. Reche ◽  
M. Cusack ◽  
...  

Abstract. Using an unprecedentedly large geochemical database, we compare temporal and spatial variations in inhalable trace metal background concentrations in a major city (Barcelona, Spain) and at a nearby mountainous site (Montseny) affected by the urban plume. Both sites are contaminated by technogenic metals, with V, Pb, Cu, Zn, Mn, Sn, Bi, Sb and Cd all showing upper continental crust (UCC) normalised values >1 in broadly increasing order. The highest metal concentrations usually occur during winter at Barcelona and summer in Montseny. This seasonal difference was especially marked at the remote mountain site in several elements such as Ti and Rare Earth Elements, which recorded campaign maxima, exceeding PM10 concentrations seen in Barcelona. The most common metals were Zn, Ti, Cu, Mn, Pb and V. Both V and Ni show highest concentrations in summer, and preferentially fractionate into the finest PM sizes (PM1/PM10 > 0.5) especially in Barcelona, this being attributed to regionally dispersed contamination from fuel oil combustion point sources. Within the city, hourly metal concentrations are controlled either by traffic (rush hour double peak for Cu, Sb, Sn, Ba) or industrial plumes (morning peak of Ni, Mn, Cr generated outside the city overnight), whereas at Montseny metal concentrations rise during the morning to a single, prolonged afternoon peak as contaminated air transported by the sea breeze moves into the mountains. Our exceptional database, which includes hourly measurements of chemical concentrations, demonstrates in more detail than previous studies the spatial and temporal variability of urban pollution by trace metals in a given city. Technogenic metalliferous aerosols are commonly fine in size and therefore potentially bioavailable, emphasising the case for basing urban background PM characterisation not only on physical parameters such as mass but also on sample chemistry and with special emphasis on trace metal content.


2016 ◽  
Author(s):  
Jessica Rodriguez ◽  
◽  
Shannon Kreutzer ◽  
Kristina L. Faul ◽  
Laura Rademacher

2011 ◽  
Vol 127 (2) ◽  
pp. 632-637 ◽  
Author(s):  
Danijela Joksimovic ◽  
Ilija Tomic ◽  
Ana R. Stankovic ◽  
Mihajlo Jovic ◽  
Slavka Stankovic

1975 ◽  
Vol 26 (1) ◽  
pp. 31 ◽  
Author(s):  
NJ Mackay ◽  
RJ Williams ◽  
JL Kacprzac ◽  
MN Kazacos ◽  
AJ Collins ◽  
...  

Results of a survey of metal levels in the Sydney rock oyster Crassostrea commercialis are reported. Concentrations of copper, zinc, cadmium, lead and arsenic in oysters sampled from the 19 important production areas in New South Wales are generally low, and in terms of the National Health and Medical Research Council recommendations for these metals there is little or no health risk to consumers. Evidence is presented which indicates that metal concentrations decrease with increasing age and wet weight of oysters. In oysters sampled from a single estuary, there is a gradient of increasing metal concentration with increasing distance upstream from the sea. Pollution may be the cause of the relatively high concentrations in oysters from this estuary, but further work will be required to verify this. The variability of metal concentrations in oysters is discussed, and a sampling method is suggested for future monitoring of metals in this species.


2011 ◽  
Vol 31 (9) ◽  
pp. 997-1007 ◽  
Author(s):  
Emilie Strady ◽  
Stéphane Kervella ◽  
Gérard Blanc ◽  
Serge Robert ◽  
Jean Yves Stanisière ◽  
...  

Author(s):  
Naudia Gray ◽  
Mary Halstead ◽  
Nathalie Gonzalez-Jimenez ◽  
Liza Valentin-Blasini ◽  
Clifford Watson ◽  
...  

As the technology of electronic nicotine delivery systems (ENDS), including e-cigarettes, evolves, assessing metal concentrations in liquids among brands over time becomes challenging. A method for quantification of chromium, nickel, copper, zinc, cadmium, tin, and lead in ENDS liquids using triple quadrupole inductively coupled plasma mass spectrometry was developed. The method’s limits of detection (LODs) were 0.031, 0.032, 3.15, 1.27, 0.108, 0.099, 0.066 µg/g for Cr, Ni, Cu, Zn, Cd, Sn, and Pb respectively. Liquids analyzed were from different brands and flavors of refill bottles or single-use, rechargeable, and pod devices from different years. Scanning electron microscopy with energy dispersive spectroscopy further evaluated the device components’ compositions. Refill liquids before contacting a device were below lowest reportable levels (LRL) for all metals. Copper and zinc were elevated in liquids from devices containing brass. Cadmium was <LRL in all liquids and was not observed in device components. Cr, Ni, Cu, Zn, Sn, and Pb, reported in µg/g, ranged from <LRL to 0.396, 4.04, 903, 454, 0.898, and 13.5 respectively. Elevated metal concentrations in the liquid were also elevated in aerosol from the corresponding device. The data demonstrates the impact of device design and materials on toxic metals in ENDS liquid.


Sign in / Sign up

Export Citation Format

Share Document