Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

2007 ◽  
Vol 38 (11) ◽  
pp. 2727-2736 ◽  
Author(s):  
Jing Xu ◽  
Mark A. Bright ◽  
Xingbo Liu ◽  
Ever Barbero
2011 ◽  
Vol 347-353 ◽  
pp. 3135-3138
Author(s):  
Hong Hua Ge ◽  
Jie Ting Tao ◽  
Xiao Ming Gong ◽  
Cheng Jun Wei ◽  
Xue Min Xu

Abstract: The effect of electromagnetic treatment on corrosion behavior of carbon steel and stainless steel in simulated cooling water was investigated by electrochemical impedance spectroscopy, potentiodynamic polarization techniques and water analysis. It was found that the charge transfer resistance decreased and the corrosion current density increased after electromagnetic treatment for carbon steel electrode, which shows that such treatment promotes corrosion of carbon steel in simulated cooling water. In contrast, the pitting potential of 316L stainless steel electrode rose which revealed that electromagnetic treatment of the experimental water exhibited corrosion inhibition to 316L stainless steel. Reasons for different corrosion behavior of the two metals were discussed.


2015 ◽  
Vol 819 ◽  
pp. 57-62 ◽  
Author(s):  
M.F. Mamat ◽  
E. Hamzah ◽  
Z. Ibrahim ◽  
A.M. Rohah ◽  
A. Bahador

In this paper, dissimilar joining of 316L stainless steel to low carbon steel was carried out using gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW). Samples were welded using AWS: ER309L welding electrode for GMAW and AWS: ER316L welding electrode for GTAW process. Determination of mechanical properties and material characterization on the welded joints were carried out using the Instron tensile test machine and an optical microscope respectively. The cross section area of the welded joint consists of three main areas namely the base metal (BM), heat affected zone (HAZ), and weld metal (WM). It was found that, the yield and tensile strengths of welded samples using ER316L filler metal were slightly higher than the welded sample using ER309L welding electrode. All welded samples fractured at low carbon steel base metal indicating that the regions of ER316L stainless steel base metal, ER316L filler metal and heat affected zone (HAZ) have a higher strength than low carbon steel base metal. It was also found that ER316L welding electrode was the best filler to be used for welding two dissimilar metals between carbon and stainless steel.


2008 ◽  
Vol 1107 ◽  
Author(s):  
Gloria Kwong ◽  
Anatolie Carcea ◽  
Roger C. Newman

AbstractAn aging assessment of the OPG waste resin storage system predicted the potential for premature failure of the carbon steel resin liners. Consequently, resin liners made of 316L stainless steel with a minimum content of 2.5% molybdenum were selected to replace the carbon steel liners. The 2.5% Mo 316L stainless steel was specified to enhance pitting resistance in the spent resin environment. With the additional Mo, one would expect that a brief electrochemical corrosion test will reveal the superiority of such alloy over conventional 316L steel. This study reports a contrary experience


2021 ◽  
Author(s):  
Paulo Moreira-Filho ◽  
Paloma de Paula da Silva Figueiredo ◽  
Artur Capão ◽  
Luciano Procópio

Abstract The present study evaluated the influence of the marine bacteria Bacillus cereus Mc-1 on the corrosion of 1020 carbon steel, 316L stainless steel, and copper alloy. The Mc-1 strain was grown in a modified ammoniacal citrate culture medium (CFA.ico-), CFA.ico- with sodium nitrate supplementation (NO3-), and CFA.ico- with sodium chloride supplementation (NaCl). The and mass loss and corrosion rate were evaluated after the periods of seven, 15, and 30 days. The results showed that in CFA.ico- and CFA.ico- medium added NO3- the corrosion rates of carbon steel and copper alloy were high when compared to the control. Whereas the medium was supplemented with NaCl, despite the rates being above the averages of the control system, they were considerably below the previous results. In general, the corrosion rates induced by Mc-1 on 316L coupons were below the results compared to carbon steel and copper alloy. When analyzing the corrosion rate measurements, regardless of the culture medium, the corrosion levels decreased consistently after 15 days, being below the levels evaluated after seven days of the experiment. Our analyzes suggest that B. cereus Mc-1 has different influences on corrosion in different metals and environmental conditions, such as the presence of NO3- and NaCl. These results can help to better understand the influence of this bacteria genus on the corrosion of metals in marine environments.


Sign in / Sign up

Export Citation Format

Share Document