A Comparison of the Chemical Inertness of Two Y2O3-Al2O3-ZrO2 and Y2O3-Al2O3 Face Coat Materials Through Sessile Drop and Investment Casting Methods

2014 ◽  
Vol 45 (7) ◽  
pp. 3116-3124 ◽  
Author(s):  
Xu Cheng ◽  
Chen Yuan ◽  
Stuart Blackburn ◽  
Paul A. Withey
2010 ◽  
Vol 70 ◽  
pp. 130-135 ◽  
Author(s):  
Fabrizio Valenza ◽  
Rafal Nowak ◽  
Natalia Sobczak ◽  
Alberto Passerone ◽  
Michele Di Foggia ◽  
...  

The need of increased efficiency of industrial gas turbines comes also through the improvement of the composition of superalloys (addition of new solutes) and of the manufacturing technologies involved in the investment casting process of the turbine blades. Thus, the knowledge of the interactions between the ceramic materials used for casting and the molten superalloys must be deepened in order to minimize the formation of internal defects, to improve the casting surface and to optimize finishing and casting operations. In this work, a study of the wetting behaviour of some Ni- or Co -based superalloys, used for the fabrication of turbine blades, has been performed with reference to the interactions of these alloys in the molten state with the silica-aluminate based ceramic materials forming the shell or the core in the casting process. Wettability tests have been performed by means of the sessile drop method at 1500°C; the characterization of the interfaces between the molten drop and the substrates has been made on solidified sessile drop samples by SEM/EDS analysis to check the final characteristics of the interfaces. The results are discussed in terms of chemical interactions in relation to the processing parameters and as a function of the surface and interfacial energetic properties of the systems.


2013 ◽  
Vol 81 (1-2) ◽  
pp. 287-298 ◽  
Author(s):  
X. Cheng ◽  
C. Yuan ◽  
N. R. Green ◽  
P. A. Withey
Keyword(s):  

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 606
Author(s):  
Fei Li ◽  
Hongjun Ni ◽  
Lixiang Yang ◽  
Yi Jiang ◽  
Donghong Wang ◽  
...  

The interaction between alloy melt and mold facecoats is the main factor affecting the surface quality of investment casting nickel-based superalloys. An investigation was undertaken to develop suitable refractories as facecoat materials for the directionally solidified blades of DZ22B nickel-based superalloys in order to avoid a sand-burning defect. The wettability and interface reactions between alloy melt and various facecoats were studied by using a sessile drop experiment and the real investment casting method, respectively. The results show that by adding Cr2O3 powder with the amounts of 2 wt.%, 5 wt.% and 10 wt.% in the fused alumina-based facecoats, the wetting angles between the alloy melt and facecoats decreased from 105.40° to 100.37°, 99.96° and 98.11°, respectively, while the sand-burning defect on the casting blade surfaces still formed during the process of directional solidification. However, by adding h-BN powder in the fused alumina-based facecoats, the wetting angles between the alloy melt and facecoats dramatically increased, the sand-burning defect on the casting blade surfaces was effectively inhibited and a metallic luster on the directionally solidified blades could be obviously observed. In this study, the suitable composition of mold facecoats for the investment casting of blades is 2 wt.% h-BN added fused alumina.


2012 ◽  
Vol 29 ◽  
pp. 61-69 ◽  
Author(s):  
X. Cheng ◽  
X.D. Sun ◽  
C. Yuan ◽  
N.R. Green ◽  
P.A. Withey

Author(s):  
Rui L Neto ◽  
Teresa P Duarte ◽  
Jorge L Alves ◽  
Tiago G Barrigana

Ti6Al4V alloy belongs to the most significant alloys within the conventional titanium alloys, namely for producing turbochargers impellers and human prostheses. TiAl alloys, because of its attractive properties, such as half density of any nickel-based alloys and excellent high temperature properties, exhibit excellent potential for aerospace turbines and turbocharger turbines application. Investment casting is a near net shape process with great interest for these kind of complex parts, but the processing of these alloys using this technique is still a challenge. In spite of these advantages, these alloys are highly reactive in their molten state, reacting with the ceramic shells used in investment casting, forming a hardened and brittle layer called alpha case on the cast alloy surface, rich in interstitial elements such as oxygen. It is commonly accepted that yttria-based face coats are the best solution for minimizing metal mold reaction, but this ceramic oxide is very expensive. So, the aim of this work is to test alternative materials to produce ceramic shells face coats. A test sample simulating both compressor wheels and turbines was developed and assembled in a wax tree for alpha case and fluidity evaluation. Reactivity studies were conducted based on microhardness measurements and microstructural analysis of γ-TiAl and Ti6Al4V standard test samples, casted in shells with different face coat materials: fused Y2O3, ZrSiO4, Al2O3, yttria (6%) stabilized ZrO2 and yttria stabilized ZrO2 with 10% fine Y2O3 (3–7 µm). The results obtained showed that fused Y2O3 face coat eliminates the alpha case, although affecting the fluidity, and γ-TiAl castings have more misruns blades than Ti6Al4V castings.


2014 ◽  
Vol 1044-1045 ◽  
pp. 59-62
Author(s):  
Yan Fei Chen ◽  
Yuong Chen ◽  
Jiang Ping Tu ◽  
Shun Qi Zheng

γ-TiAl alloys are emerging as potential light-weight, high-temperature structural materials and possess wide capacities of engineering applications in aeronautics, space and automobile industries because of their low density, high specific strength and specific modulus, good oxidation-resistance and creep-resistance. Investment casting is introduced to complex TiAl net-shape or near net-shape components. In this research, ZrO2 (CaO stabilized) was chosen as the face coat materials for the investment casting of TiAl alloys. The present study mainly focuses on the fabrication of ceramic shell mould for TiAl investment casting. Optimisation of reducing the stress in cast-mould system was carried out. The processing technology of the invented ceramic shell moulds was successfully verified in the investment casting of prototype TiAl parts. The interfacial reaction between TiAl alloys and ZrO2 ceramic mould was analyzed using OM, SEM, EDS and XRD. The experimental results showed that, when the rotation speed is 200 rpm and 400 rpm, the thickness of reaction layer is about 5μm and 20μm, respectively.


Sign in / Sign up

Export Citation Format

Share Document