The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment casting

Author(s):  
Rui L Neto ◽  
Teresa P Duarte ◽  
Jorge L Alves ◽  
Tiago G Barrigana

Ti6Al4V alloy belongs to the most significant alloys within the conventional titanium alloys, namely for producing turbochargers impellers and human prostheses. TiAl alloys, because of its attractive properties, such as half density of any nickel-based alloys and excellent high temperature properties, exhibit excellent potential for aerospace turbines and turbocharger turbines application. Investment casting is a near net shape process with great interest for these kind of complex parts, but the processing of these alloys using this technique is still a challenge. In spite of these advantages, these alloys are highly reactive in their molten state, reacting with the ceramic shells used in investment casting, forming a hardened and brittle layer called alpha case on the cast alloy surface, rich in interstitial elements such as oxygen. It is commonly accepted that yttria-based face coats are the best solution for minimizing metal mold reaction, but this ceramic oxide is very expensive. So, the aim of this work is to test alternative materials to produce ceramic shells face coats. A test sample simulating both compressor wheels and turbines was developed and assembled in a wax tree for alpha case and fluidity evaluation. Reactivity studies were conducted based on microhardness measurements and microstructural analysis of γ-TiAl and Ti6Al4V standard test samples, casted in shells with different face coat materials: fused Y2O3, ZrSiO4, Al2O3, yttria (6%) stabilized ZrO2 and yttria stabilized ZrO2 with 10% fine Y2O3 (3–7 µm). The results obtained showed that fused Y2O3 face coat eliminates the alpha case, although affecting the fluidity, and γ-TiAl castings have more misruns blades than Ti6Al4V castings.

2014 ◽  
Vol 1044-1045 ◽  
pp. 59-62
Author(s):  
Yan Fei Chen ◽  
Yuong Chen ◽  
Jiang Ping Tu ◽  
Shun Qi Zheng

γ-TiAl alloys are emerging as potential light-weight, high-temperature structural materials and possess wide capacities of engineering applications in aeronautics, space and automobile industries because of their low density, high specific strength and specific modulus, good oxidation-resistance and creep-resistance. Investment casting is introduced to complex TiAl net-shape or near net-shape components. In this research, ZrO2 (CaO stabilized) was chosen as the face coat materials for the investment casting of TiAl alloys. The present study mainly focuses on the fabrication of ceramic shell mould for TiAl investment casting. Optimisation of reducing the stress in cast-mould system was carried out. The processing technology of the invented ceramic shell moulds was successfully verified in the investment casting of prototype TiAl parts. The interfacial reaction between TiAl alloys and ZrO2 ceramic mould was analyzed using OM, SEM, EDS and XRD. The experimental results showed that, when the rotation speed is 200 rpm and 400 rpm, the thickness of reaction layer is about 5μm and 20μm, respectively.


2021 ◽  
Vol 55 (s3) ◽  
pp. 6-11
Author(s):  
Terra A. Kremer ◽  
Kaumudi Kulkarni ◽  
Christopher Ratanski ◽  
Lorraine Floyd ◽  
Christopher Anderson

Abstract The AAMI working group ST/WG 93 is finalizing a standard (AAMI ST98) for the cleaning validation of reusable medical devices based on guidance from the technical information report AAMI TIR30:2011/(R)2016. A number of analytical best practices are being considered for this new standard. Test method suitability for processing cleaning validations historically has been established using one positive control and performing an extraction efficiency. The new cleaning validation standard is proposed to require a change from only one replicate test sample to three when performing method suitability. This change will affect manufacturers; therefore, the value of and consideration for performing these additional replicates requires explanation. This article discusses how variation of validation parameters can affect the accuracy and precision during method suitability testing. Multiple replicates are needed to understand the variability of method extraction and impact on cleaning validations of reusable medical devices.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2757 ◽  
Author(s):  
Ning Cui ◽  
Qianqian Wu ◽  
Zhiyuan Yan ◽  
Haitao Zhou ◽  
Xiaopeng Wang

In this paper, the microstructure, deformability, tensile properties, and phase hardness of the Ti–43Al–2Cr–0.7Mo–0.1Y alloy with a high β phase content were investigated. Microstructural analysis showed that the β phase precipitated not only at the colony boundaries but also inside the lamellae due to its high content. A high-quality forging stock was prepared through one-step noncanned forging. The total deformation reached above 80%, suggesting that the alloy has good hot deformability compared to other TiAl alloys. The deformed microstructure was composed of fine and equiaxed grains due to dynamic recrystallization. The high β phase content was shown to contribute to the decomposition of the initial coarse lamellae. Tensile testing showed that the alloy has good room-temperature ductility, even if the β phase content reaches above 20%. This is inconsistent with a previous study that showed that a large amount of the hard β phase is detrimental to the room-temperature ductility of TiAl alloys. Nanoindentation testing showed that the hardness of the β phase in the current alloy is about 6.3 GPa, which is much lower than that in the Nb-containing TiAl alloys. Low hardness benefits the compatible deformation among various phases, which could be the main reason for the alloy’s good room-temperature ductility. Additionally, the influence of various β stabilizers on the hardness of the β phase was also studied. The β phase containing Nb had the highest hardness, whereas the β phase containing Cr had the lowest hardness.


2010 ◽  
Vol 638-642 ◽  
pp. 1281-1287 ◽  
Author(s):  
Yu Yong Chen ◽  
Yan Fei Chen ◽  
Fan Tao Kong ◽  
Shu Long Xiao

The paper outlines some research work that has been conducted in Harbin Institute of Technology, on the fabrication of TiAl alloys. The review is presented with special emphasis on some different manufacturing routes of TiAl alloys, including investment casting, canned forging and sheet rolling, mechanical milling and rapid solidification. Investment casting has been developed to manufacture near-net shape TiAl blades. Also included are current development of canned forging and rolling for TiAl sheets. Then, TiAl nanocrystalline powders gained through low temperature and two steps mechanical milling were researched. And considerably refined TiAl alloys with Y additions were produced by rapid solidification and the microstructure evolution with Y addition was studied. Details of the processing route and microstructure related to different processing method will be presented.


2014 ◽  
Vol 1019 ◽  
pp. 302-310 ◽  
Author(s):  
Kalenda Mutombo ◽  
Christina Kgomo ◽  
P. Rossouw

The interaction between the Ti6Al4V alloy and the mould materials was investigated. The alpha-case was characterized by Vickers hardness tester, optical and scanning electron microscopy equipped with electron dispersive X-ray spectrometry (EDX). X-ray diffraction (XRD) analysis was performed on as cast and on YFSZ or YZ-Blended face-coats. From the experimental results, a distinct alpha-case formation was revealed. The YFSZ led to a thicker and harder alpha-case than the YZ-Blended face-coat. The EDX revealed the presence of Zr and Si elements in both alpha-cases. Therefore, from experimental results and thermodynamic calculations, pure ZrO2and SiO2may react with Ti.


2015 ◽  
Vol 1088 ◽  
pp. 181-185
Author(s):  
Li Fang ◽  
Henry Hu ◽  
Shu Ping Wang

The focus of this study is on development of alternative manufacturing processes for potential high temperature magnesium-aluminium-strontium alloys. The effect of external pressure on tensile properties of squeeze cast Mg-Al-Sr alloy was investigated. Four different applied levels, 0, 30, 60 and 90 MPa, were employed to exert on a Mg-6 wt.% Al – 0.5 wt.% Sr alloy during squeeze casting. The results of tensile testing indicate that the ultimate tensile strength (UTS), yield strength (YS) and elongation (Ef) of the squeeze cast Mg-Al-Sr alloy increase with increasing applied pressure level. The microstructural analysis and porosity measurements suggest that the tensile property enhancement resulting from applied pressure should be attributed to microstructure refinement and porosity reduction of the squeeze cast alloy.


Wireless multimedia communication facilitates the way we communicate and work. Multimedia communication has greatly changed the approach of modern world communication, especially during the peak period of coronavirus pandemic, where patterns of official meetings, business transactions and medical services shifted toward virtual approach using multimedia applications such as video conference, Skype, zoom applications and Video on Demand for personalized media consumption. Multimedia communication demands large chuck of scarced network resources to meet users’ quality performance compared to audio communication. This paper assesses the effect of motion intensity on perceived quality of multimedia communication. System simulations performed with the four different ITU-T reference sequences standard test multimedia sequences of various motion intensity characteristics shows that the perceived quality multimedia test sequences decreases with increase in motion intensity level of test multimedia samples under constraint network condition. Approximately, Akiyo test sample with significant low motion intensity recorded average Mean Opinion Score (MOS) value of 4.16 compared with 3.11 and 3.02 MOS values obtained for test samples with relative high motion intensity characteristics.


2021 ◽  
Vol 57 (4) ◽  
pp. 366-375
Author(s):  
Dragos-Florin Chitariu ◽  
Emilian Paduraru ◽  
Gures Dogan ◽  
Mehmet Ilhan ◽  
Florin Negoescu ◽  
...  

In this paper, the problem of the behaviour of soft jaws that can be used to replace the steel jaws of grippers is studied. One of the advantages of additive manufacturing is the printing of fully functional parts. Choice of material is often related to the part strength. The mechanical properties of 3D printed parts should meet the service loading and, also, must be comparable with parts produced by traditional manufacturing techniques - machined parts or injection moulding. From the specialized literature information regarding the test results for effect of various printing parameters on part strength are available made in laboratory conditions and for standard test sample. For ABS materials various values for Young module are presented varying from 1.5 GPa to 2.15 GPa, for 100% infill rate and various modified parameters such as raster orientation. In order to study the behaviour of soft gripper jaws several part were printing and the resistance to bending was tested, by simulating the way a gripper works. An experimental stand was built using a force transducer and a displacement transducer to measure the deformation of the jaw, obtained by 3D printing, under load. The mechanical elastic hysteresis loop during an experimental loading/unloading was plotted and the amount of mechanical energy lost during a cycle, dissipated because the internal friction, was determined. Finite element analysis method was applied to make a comparison with the experimental results. In the finite element analysis, several simulations were considered, varying Young s modulus for the tested material.


Sign in / Sign up

Export Citation Format

Share Document