alpha case
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
B. Öztürk ◽  
L. Mengis ◽  
D. Dickes ◽  
U. Glatzel ◽  
M. C. Galetz

AbstractThe Ti-6Al-4V alloy is extensively used in aerospace, automotive and biomaterial applications. In the aerospace industry, the service temperature of Ti-6Al-4V is currently limited to 350 °C due to its insufficient oxidation resistance. Oxidation at higher temperatures causes the formation of a fast-growing oxide scale and an oxygen-enriched subsurface layer, which is known as the “alpha-case.” Additionally, the effect of water vapor on the oxidation behavior is critical. In the present study, the oxidation behavior of Ti-6Al-4V in dry air and air containing 10 vol.% H2O at 500, 600 and 700 °C for up to 500 h has been investigated. The main focus of this study is the examination of the different oxide scale morphologies along with the oxygen enrichment in the subsurface zone. It has been observed that spallation of the oxide scale is more severe in a water vapor-containing environment. In dry air, the oxide morphology shows the typical layered TiO2/Al2O3 structure after exposure at 700 °C for 300 h, while Al2O3 precipitates are present in the outermost part of the TiO2 scale when oxidized in wet air. This indicates that the solubility and diffusivity of Al3+ ions in TiO2 are influenced by water vapor. In addition, the extent of oxygen enrichment in the subsurface zone (alpha-case) as a function of temperature and time is determined by nanoindentation profiles. It was shown that in contrast to the scale formation, the alpha-case thickness is not affected by the presence of water vapor in the atmosphere.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1057
Author(s):  
Xin Feng ◽  
Yilong Liang ◽  
Hao Sun ◽  
Shu Wang

The oxygen diffusion layer (alpha-case) is generally considered to have a negative impact on the mechanical properties and applications of titanium alloys. In this study, TC4 alloy specimens with four types of different oxygen concentrations in alpha-case were obtained by controlling the oxygen diffusion process parameters. Scanning electron microscopy and glow discharge spectrometry were employed to characterize the microstructure and oxygen concentration of alpha-case. The effect of alpha-case on strength and ductility of TC4 alloy was investigated via tensile test and new insights were provided. The results indicate that with the increase in the oxygen concentration in the alpha-case, the ductility of the TC4 alloy gradually decreased. Interestingly, the strength of TC4 alloy with the alpha-case first increased and then decreased, resulting in the existence of a peak corresponding to a lower oxygen concentration before the decline of strength. Furthermore, a relatively good ductility match was also observed at the peak. When the oxygen concentration was relatively high, both the strength and ductility decreased. This phenomenon is attributed to the fact that dislocations in the alpha-case controlled by the oxygen concentration were modified from wavy slip to planar slip. Finally, the dislocation’s slip morphology was characterized by transmission electron microscopy.


2020 ◽  
Vol 769 ◽  
pp. 138495 ◽  
Author(s):  
E.V. Naydenkin ◽  
I.P. Mishin ◽  
I.V. Ratochka ◽  
O.N. Lykova ◽  
O.V. Zabudchenko

2019 ◽  
Vol 51 (2) ◽  
pp. 586-596 ◽  
Author(s):  
Thanachai Boonchuduang ◽  
Atipong Bootchanont ◽  
Wantana Klysubun ◽  
Penphitcha Amonpattaratkit ◽  
Atchara Khamkongkaeo ◽  
...  

2019 ◽  
Vol 1328 ◽  
pp. 012058
Author(s):  
E Yu Petrov ◽  
A M Lyakhovich ◽  
N F Kashapov ◽  
S F Lomaeva ◽  
R I Mistahov

2019 ◽  
Vol 946 ◽  
pp. 258-264
Author(s):  
Galina I. Shcherbakova ◽  
Maxim S. Varfolomeev ◽  
Pavel A. Storozhenko

We consider the problems of the complex application of the aluminium-yttrium binder in the fabrication of high-temperature resistant melting crucibles and investment molds thermoschemically resistant to titanium melts. The results of the contact interaction investigations of a molten titanium alloy with a material of aluminum-yttrium ceramics are presented. The usage of ceramic products of α-Al2O3–Y3Al5O12∙α-Al2O3 composition under conditions of high-temperature melting and pouring under vacuum minimizes the physicochemical interaction and significantly reduces the alpha case layer on cast products, thereby improving their operational properties.


Author(s):  
Nikita Mohite ◽  
Sachin Biradar ◽  
Jyoti Shankar Jha ◽  
Sushil Mishra ◽  
Asim Tewari

The components of the aero engines such as fan blades are generally manufactured from Titanium alloy forgings. At the elevated temperatures, the affinity of Titanium towards oxygen is very high, which results in formation of oxide layer on surface known as alpha-case layer. This alpha-case is both hard and brittle in nature which results in localized micro failure during its application. This gives rise to a fatigue crack initiation zone and compromises the integrity of the component, causing it to fail. To investigate this, Titanium α-β (Ti 64), α (Sn) and β (Mo) alloys were heat treated at 1010°C for 30min, 60min, 90min and 120min followed by air cooling. Formation of alpha-case layer in Ti-6Al-4V, Ti-Sn and Ti-Mo increased from 120.5μm to 391.1μm, 128.77μm to 443.23μm, 105.75μm to 262.46μm at 30mins and 120mins respectively. Chemical treatment, cathodic de-oxygenation, surface coating and laser ablation methods are generally used to remove the alpha case. In the current study, acid pickling is used to remove the alpha case layer, as this process is simple and also easily applicable to any complex shape of the material. In this method, samples were dipped in the solution of HF (5%) and HNO3 (35%) at 80 °C for fixed time at fixed intervals to find the rate of alpha case removal. Micro indentation was carried out to obtain hardness profile from surface to bulk of heat treated specimen. The quantification of alpha case oxide layer from surface to bulk was done by EDS.


Sign in / Sign up

Export Citation Format

Share Document