scholarly journals On the Effect of Nb on the Microstructure and Properties of Next Generation Polycrystalline Powder Metallurgy Ni-Based Superalloys

2018 ◽  
Vol 49 (9) ◽  
pp. 3896-3907 ◽  
Author(s):  
Katerina A. Christofidou ◽  
Mark C. Hardy ◽  
Hang-Yue Li ◽  
Christos Argyrakis ◽  
Hiroto Kitaguchi ◽  
...  
2020 ◽  
Vol 321 ◽  
pp. 11028
Author(s):  
S.V. Prikhodko ◽  
O.M. Ivasishin ◽  
P.E. Markovsky ◽  
D.G. Savvakin ◽  
O.O. Stasiuk

Due to the high specific strength of Ti, materials on its base are indispensable when high-strength and low-weight requests are a chief demand from the industry. Reinforcement of Ti-alloys with hard and light particles of TiC and TiB is a credible pathway to make metal matrix composites (MMC) with enhanced elastic moduli without compromising the material’s low-weight. However, reinforcement of the alloy with hard particles inevitably lowers the value of toughness and plasticity of material. Yet, in many applications simultaneous high hardness and high plasticity are not required through the entire structure. For instance, parts that need enhanced wear resistance or resistance upon ballistic impact demand high hardness and strength at the surface, whereas their core necessitates rather high toughness and ductility. Such combination of mechanical properties can be achieved on layered structures joining two and more layers of different materials with different chemical composition and/or microstructure within each individual layer. Multi-layered structures of Ti-6Al-4V alloy and its metal-matrix composites (MMC) with 5 and10% (vol.) of TiC and TiB were fabricated in this study using blended elemental powder metallurgy (BEPM) of hydrogenated Ti. Post-sintering hot deformation and annealing were sometimes also employed to improve the microstructure and properties. Structure of materials were characterized using light optical microscopy, scanning electron microscopy, electron backscattered diffraction, x-ray microscopy, tensile and 3-point flexural tests. The effect of various fabrication parameters was investigated to achieve desirable microstructure and properties of layered materials. Using optimized processing parameters, relatively large multilayered plates were made via BEPM and demonstrate superior anti-ballistic performance compared to the equally sized uniform Ti-6Al-4V plates fabricated by traditional ingot and wrought technology.


2020 ◽  
Vol 7 (1) ◽  
pp. 016546
Author(s):  
Guofei Zhang ◽  
Haiqing Yin ◽  
Cong Zhang ◽  
Zhenghua Deng ◽  
Ruijie Zhang ◽  
...  

2019 ◽  
Vol 6 (10) ◽  
pp. 1065b3 ◽  
Author(s):  
Xiaojing Xu ◽  
Chong Li ◽  
Vitus Mwinteribo Tabie ◽  
Saifu Wang ◽  
Chengbin Cai ◽  
...  

2015 ◽  
Vol 817 ◽  
pp. 604-609
Author(s):  
Jie Wu ◽  
Lei Xu ◽  
Zheng Guan Lu ◽  
Rui Peng Guo ◽  
Yu You Cui ◽  
...  

Pre-alloyed powder of Ti-47Al-2Cr-2Nb-0.15B was prepared by a gas atomization process and powder metallurgy (PM) γ-TiAl alloys were made through a hot isostatic pressed (HIPed) route. The atomized powders were canned in containers, degassed, sealed, and HIPed. Effect of two different canning materials (mild steel and commercial pure titanium (CP-Ti)) on the microstructure and properties of as-HIPed γ-TiAl alloy were discussed. Due to the reaction between mild steel containers and γ-TiAl at relative high temperature (over 1230 °C), the γ-TiAl matrix is contaminated. CP-Ti canned γ-TiAl showed bigger yield and fracture strength than mild steel canned TiAl. PM γ-TiAl alloy parts having complex shape could be manufactured by the near net-shape process.


2019 ◽  
Vol 61 (7) ◽  
pp. 627-634
Author(s):  
Meiyanathan Meignanamoorthy ◽  
Manickam Ravichandran ◽  
Vinoth Sundar Vidhya ◽  
Veeramani Anandakrishnan

2020 ◽  
Vol 9 (4) ◽  
pp. 20190073
Author(s):  
Eman Toulba ◽  
Mahmudun N. Chowdhury ◽  
Ahmed I. Ali ◽  
Ibrahim S. Qassem ◽  
Walid M. Daoush

2013 ◽  
Vol 58 (1) ◽  
pp. 43-48 ◽  
Author(s):  
B. Leszczynska-Madej

Attempts have been made to describe the influence of sintering temperature on the microstructure and properties of Al - SiC composites. Mixtures of 100%Al and Al - 5% SiC, Al - 10% SiC were produced by tumbling for 30 minutes in the Turbula T2F mixer. The powders were subsequently cold pressed at pressure 300MPa in a rigid die on a single action press. The green compacts were sintered in nitrogen at 580°C and 620°C for one hour. The main objective of this work was to determine influence of chemical composition and the manufacturing parameters on microstructure and properties of Al - SiC composites produced by powder metallurgy technology.


Sign in / Sign up

Export Citation Format

Share Document