Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

2017 ◽  
Vol 48 (5) ◽  
pp. 2293-2303 ◽  
Author(s):  
Davi Munhoz Benati ◽  
Kazuhiro Ito ◽  
Kazuyuki Kohama ◽  
Hajime Yamamoto ◽  
Eugenio José Zoqui
2016 ◽  
Vol 256 ◽  
pp. 63-68
Author(s):  
Davi Munhoz Benati ◽  
Kazuhiro Ito ◽  
Kazuyuki Kohama ◽  
Hajime Yamamoto ◽  
Eugênio José Zoqui

Fe-2.5C-1.5Si gray cast iron evaluated in previous works exhibited promising potential as semisolid raw material presenting low levels of maximum stress and viscosity, similar to Al-Si alloys. This work is intended to investigate phase transformations and liquid phase formation for the Fe-2.5C-1.5Si gray cast iron in order to understand the performance of the alloy during the semisolid processing. Thus in situ heating experiments via high temperature laser scanning confocal microscopy were performed to analyze the solid-to-liquid transition. At room temperature alloy presented a matrix of pearlite and ferrite with type D flake graphite. During the heating process the main transformations observed were graphite precipitation on the austenite grain boundaries, graphite precipitates and flakes graphite growing and coarsening with the increasing of temperature and the beginning of melt around 1140°C. Coarsened flakes at high temperatures resulted in a liquid continuous network after melting, thereby the liquid phase was formed surrounding and wetting homogeneously the solid phase. This favors the detachment of grains from each other and leads to the intended solid globules immersed in liquid.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
A. R. Kiani-Rashid ◽  
M. Mostafapour ◽  
S. K. Kaboli-Mallak ◽  
A. Babakhani

Taking into account the importance of the amount of bainite phase on the microstructure of cast irons and its influence on the improvement of mechanical properties, this research selected an alloy of gray cast iron containing Nickel-Molybdenum and conducted the austenitising and austempering processes at 900°C and 400°C for 60 minutes, respectively. The way of bainite phase formation and the effect of sample thickness, that is, cooling rate, were examined by selecting a standard staircase sample. The results indicated that, by increasing the cross sections of samples, the martensite percentage decreases and the phase proportion of bainitic ferrite increases.


2019 ◽  
Vol 16 (2) ◽  
Author(s):  
Amin Suhadi ◽  
Seodihono

Production technology of metal casting industry in Indonesia needs to be improved, especially in the manufacturing of spare parts and box engine made of gray cast iron which has various wall thick such as dove tale construction. Microstructure of gray cast iron is influenced by cooling rate during casting, chemical composition and melting treatment process (inoculation). The part which has the thinnest thickness has the fastest cooling therefore, the grain boundary is smaller compared to other section. As a result this part has highest hardness and difficult to be machined. This research is conducted to solve this problem by modifying melting and solidification treatment process. The research starting from micro structure analysis, composition and mechanical properties tests on the product, and then conducting modification treatment through Taguchi method approach. Experimental results obtained show that the best level settings to control factors which affect to the uniformity of the microstructure and mechanical properties in gray cast iron is the addition of seed inoculation super ® 75, as much as 0.25% with the method of inoculation material entering into the Transfer Ladle.Teknologi produksi pada industri pengecoran di Indonesia masih membutuhkan perbaikan terutama dalam pembuatan komponen mesin perkakas dan peralatan pabrik yang terbuat dari besi tuang kelabu yang mempunyai variasi ketebalan yang besar seperti konstruksi ekor burung (dove tale). Pada pengecoran, struktur mikro dari besi tuang kelabu sangat dipengaruhi oleh kecepatan pendinginan, komposisi kimia dan proses perlakuan pada logam cair (inokulasi). Bagian yang mempunyai ukuran paling tipis mempunyai kecepatan pendinigan paling tinggi karena itu ukuran butirnya jauh lebih kecil dari bagian lain, akibatnya bagian ini mempunyai kekerasan lebih tinggi dan sulit dilakukan pengerjaan mesin. Penelitian ini bertujuan untuk memperbaiki hal ini yang terjadi pada dove taledengan cara memodifikasi proses perlakuan pada cairan besi dan proses pendinginan. Penelitian dimulai dari analisa struktur mikro, pengujian komposisi kimia, pengujian sifat mekanis pada produk kemudian dilakukan modifikasi menggunakan pendekatan metode statistik Taguchi. Hasil penelitian menunjukkan bahwa pengaturan terbaik yang dapat diperoleh untuk mendapatkan keseragaman struktur mikro dan sifat mekanis pada pengecoran besi tuang kelabu adalah penambahan seed inoculation super ® 75, sebesar 0.25% dengan metode pemasukan inokulasi kedalam Ladle pengangkut logam cair.Keywords: carbon, micro structure, hardness, inoculation


Alloy Digest ◽  
1973 ◽  
Vol 22 (2) ◽  

Abstract MEEHANITE GF-20 is a gray cast iron designed principally for high machinability and is used where strength is not an important factor. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: CI-39. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract ISO 185/JL/225 is an intermediate-tensile-strength gray cast iron that has a predominantly pearlitic matrix, and a tensile strength of 225–325 MPa (33-47 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. Compared with the lower strength gray cast iron grades, ISO 185/JL/225 contains lower carbon and silicon contents, while still maintaining excellent thermal conductivity, damping capacity, and machinability. This datasheet provides information on composition, physical properties, tensile properties, and compressive strength as well as fatigue. It also includes information on heat treating. Filing Code: CI-73. Producer or source: International Organization for Standardization (ISO).


Author(s):  
Eduard Riemschneider ◽  
Ilare Bordeasu ◽  
Ion Mitelea ◽  
Ion Dragos Utu ◽  
Corneliu Marius Crăciunescu

2003 ◽  
Vol 35 (6) ◽  
pp. 568-573 ◽  
Author(s):  
A. A. Lebedev ◽  
I. V. Makovetskii ◽  
V. P. Lamashevskii ◽  
N. L. Volchek

2020 ◽  
Vol 15 (4) ◽  
pp. 543-549
Author(s):  
Haydar Kepekci ◽  
Ergin Kosa ◽  
Cüneyt Ezgi ◽  
Ahmet Cihan

Abstract The brake system of an automobile is composed of disc brake and pad which are co-working components in braking and accelerating. In the braking period, due to friction between the surface of the disc and pad, the thermal heat is generated. It should be avoided to reach elevated temperatures in disc and pad. It is focused on different disc materials that are gray cast iron and carbon ceramics, whereas pad is made up of a composite material. In this study, the CFD model of the brake system is analyzed to get a realistic approach in the amount of transferred heat. The amount of produced heat can be affected by some parameters such as velocity and friction coefficient. The results show that surface temperature for carbon-ceramic disc material can change between 290 and 650 K according to the friction coefficient and velocity in transient mode. Also, if the disc material gray cast iron is selected, it can change between 295 and 500 K. It is claimed that the amount of dissipated heat depends on the different heat transfer coefficient of gray cast iron and carbon ceramics.


Sign in / Sign up

Export Citation Format

Share Document