Simple and Cost-Effective Synthesis of Activated Carbon Anchored by Functionalized Multiwalled Carbon Nanotubes for High-Performance Supercapacitor Electrodes with High Energy Density and Power Density

2021 ◽  
Vol 50 (5) ◽  
pp. 2879-2889
Author(s):  
Manoranjan Mandal ◽  
Subhasri Subudhi ◽  
Injamul Alam ◽  
BVRS Subramanyam ◽  
Santosini Patra ◽  
...  
Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 409
Author(s):  
Xiaofei Tang ◽  
Rui Zhu ◽  
Tianjing Shi ◽  
Yu Wang ◽  
Xiaochen Niu ◽  
...  

High energy density materials (HEDM) are the subject of an extensive research effort in relation to the use of these compounds as components of rocket propellants, powders, and formulations of high-performance explosives. Hexanitrohexaazaisowurtzitane (HNIW, i.e., CL-20) has received much attention in these research fields for its specific impulse, burning rate, ballistics, and detonation velocity. In this paper, the development and performances of the explosives from the first to the fourth generation are briefly summarized, and the synthesis status of the fourth-generation explosive, HNIW, is reviewed. The key issues that restrict the development of industrial amplification synthesis of HNIW are analyzed, and the potential directions of development are proposed. It is pointed out that to synthesize new and efficient catalysts is the key to making the cost-effective manufacturing of CL-20 a reality.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Yudan Yuan ◽  
Yi Sun ◽  
Zhichen Feng ◽  
Xingjian Li ◽  
Ruowei Yi ◽  
...  

A facile and environmentally friendly fabrication is proposed to prepare nitrogen-doped hierarchical porous activated carbon via normal-pressure popping, one-pot activation and nitrogen-doping process. The method adopts paddy as carbon precursor, KHCO3 and dicyandiamide as the safe activating agent and nitrogen dopant. The as-prepared activated carbon presents a large specific surface area of 3025 m2·g−1 resulting from the synergistic effect of KHCO3 and dicyandiamide. As an electrode material, it shows a maximum specific capacitance of 417 F·g−1 at a current density of 1 A·g−1 and very good rate performance. Furthermore, the assembled symmetric supercapacitor presents a large specific capacitance of 314.6 F·g−1 and a high energy density of 15.7 Wh·Kg−1 at 1 A·g−1, maintaining 14.4 Wh·Kg−1 even at 20 A·g−1 with the energy density retention of 91.7%. This research demonstrates that nitrogen-doped hierarchical porous activated carbon derived from paddy has a significant potential for developing a high-performance renewable supercapacitor and provides a new route for economical and large-scale production in supercapacitor application.


Author(s):  
Huixiang Yin ◽  
Dongdong Li ◽  
Zhenzhen Chi ◽  
Qian Zhang ◽  
Xiaoqiang Liu ◽  
...  

Rechargeable Li–O2 batteries have attracted worldwide attention due to super-high energy density. However, there are still many critical challenges for Li–O2 batteries, such as huge overpotential caused by sluggish oxygen...


RSC Advances ◽  
2016 ◽  
Vol 6 (75) ◽  
pp. 71338-71344 ◽  
Author(s):  
Jingjie Wang ◽  
Hongsen Li ◽  
Laifa Shen ◽  
Shengyang Dong ◽  
Xiaogang Zhang

A high performance Li ion capacitor was constructed with Nb2O5/CMK-3 as anode and activated carbon as cathode, which demonstrated high energy density and power density benefit from the combination of the merits of batteries and supercapacitors.


Research ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jianchao Sun ◽  
Yong Lu ◽  
Hao Yang ◽  
Mo Han ◽  
Lianyi Shao ◽  
...  

Na-CO2 batteries have attracted significant attentions due to their high energy density and effective utilization of greenhouse gas CO2. However, all reported Na-CO2 batteries employ excessive preloaded metal Na, which will lead to safety issues such as dendrite formation and short circuit. In addition, the charging mechanism of reported Na-CO2 batteries is not very clear. Here we report the Na-CO2 batteries, starting from the cathode of cheap Na2CO3 and multiwalled carbon nanotubes (CNTs). Due to the effective electron transfer and high reactivity, the decomposition of Na2CO3 and CNTs could take place under 3.8 V. The charging mechanism of 2Na2CO3 + C → 4Na + 3CO2 without any side reactions is revealed by in/ex situ techniques such as Raman, gas chromatograph, and optical microscope. Dendrite-free Na can quantitatively deposit on the Super P/Al anode because of large specific surface area and low nucleation barrier of the anode for Na plating. The batteries could deliver an energy density of 183 Wh kg−1 (based on the whole mass of the pouch-type batteries, 4 g) with stable cycling performance. This work reveals that safe rechargeable Na-CO2 batteries could be constructed by cheap Na2CO3 and multiwalled carbon nanotubes.


2018 ◽  
Vol 2 (3) ◽  
pp. 558-565 ◽  
Author(s):  
Hiroyuki Itoi ◽  
Hideyuki Hasegawa ◽  
Hiroyuki Iwata ◽  
Yoshimi Ohzawa

High-dispersion of a hydrophobic TEMPO derivative inside the pores of activated carbon provides high-performance aqueous electrochemical capacitor electrodes without polymerization.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


Sign in / Sign up

Export Citation Format

Share Document