Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

2016 ◽  
Vol 25 (10) ◽  
pp. 4537-4548
Author(s):  
Shefali Trivedi ◽  
D. Ravi Kumar ◽  
S. Aravindan
Alloy Digest ◽  
1974 ◽  
Vol 23 (5) ◽  

Abstract WC-3015 is a columbium-base alloy developed for structural applications in high-temperature oxidizing environments. It is characterized by good oxidation resistance, good mechanical properties and compatibility with silicide coatings. Cold-rolled sheet can be joined and welded without cracking. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-21. Producer or source: Wah Chang, a Teledyne Corporation.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 476
Author(s):  
Sayed Amer ◽  
Ruslan Barkov ◽  
Andrey Pozdniakov

Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and annealed state were observed; the effect of annealing on the microstructure was studied, as were the mechanical properties and forming properties of the alloys, and the mechanism of action was explored. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting temperature of the alloys is in the range of 250–350 °C after rolling with previous quenching at 590 and 605 °C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.


2016 ◽  
Vol 849 ◽  
pp. 376-381
Author(s):  
Ming Long Li ◽  
Yu Jie Geng ◽  
Chen Chen ◽  
Shu Jie Pang ◽  
Tao Zhang

The effects of cold-rolling with different reduction ratios of 70%-90% on the microstructure and mechanical properties of Ti50Zr30Nb10Ta10 alloy were investigated. It was found that the β-Ti phase in this alloy was stable under cold-rolling. With the increase in reduction ratio from 70% to 90%, the microstructure of the alloys evolved from deformed dendrite structure to fiber-like structure. The alloy cold-rolled with the reduction ratio of 70% exhibited optimum mechanical properties of combined high fracture strength of 1012 MPa and plastic strain of 10.1%, which are closely correlated with the dendrite structure of the alloy. It is indicated that the proper cold-rolling is an effective way to improve the mechanical properties of the titanium alloy.


Sign in / Sign up

Export Citation Format

Share Document