Investigation on Hydrogen Embrittlement Sensitivity of Hot-Rolled and Annealed Microstructure to AISI 430 Ferritic Stainless Steel

Author(s):  
Tao Wang ◽  
Wenjie Lv ◽  
Wentao Xiao ◽  
Kun Wang ◽  
Huiyun Zhang ◽  
...  
Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 140 ◽  
Author(s):  
W. K. Chan ◽  
C. T. Kwok ◽  
K. H. Lo

In the present study, the feasibility of laser surface melting (LSM) of AISI 430 ferritic stainless steel to minimize hydrogen embrittlement (HE) was investigated. LSM of AISI 430 steel was successfully achieved by a 2.3-kW high power diode laser (HPDL) with scanning speeds of 60 mm/s and 80 mm/s (the samples are designated as V60 and V80, respectively) at a power of 2 kW. To investigate the HE effect on the AISI 430 steel without and with LSM, hydrogen was introduced into specimens by cathodic charging in 0.1 M NaOH solution under galvanostatic conditions at a current density of 30 mA/cm2 and 25 °C. Detail microstructural analysis was performed and the correlation of microstructure with HE was evaluated. By electron backscatter diffraction (EBSD) analysis, the austenite contents for the laser-surface melted specimens V60 and V80 are found to be 0.6 and 1.9 wt%, respectively. The amount of retained austenite in LSM specimens was reduced with lower laser scanning speed. The surface microhardness of the laser-surface melted AISI 430 steel (~280 HV0.2) is found to be increased by 56% as compared with that of the substrate (~180 HV0.2) because of the presence of martensite. The degree of embrittlement caused by hydrogen for the charged and non-charged AISI 430 steel was obtained using slow-strain-rate tensile (SSRT) test in air at a strain rate of 3 × 10−5 s−1. After hydrogen pre-charging, the ductility of as-received AISI 430 steel was reduced from 0.44 to 0.25 while the laser-surface melted AISI 430 steel showed similar tensile properties as the as-received one. After LSM, the value of HE susceptibility Iδ decreases from 43.2% to 38.9% and 38.2% for V60 and V80, respectively, due to the presence of martensite.


2013 ◽  
Vol 794 ◽  
pp. 618-625
Author(s):  
P. Saravanan ◽  
S. Srikanth ◽  
S. Sisodia ◽  
K. Ravi

Metallurgical investigations were directed to probe into the incidence of inordinate rusting and pitting in imported AISI 430 grade hot-rolled ferritic stainless steel sheet coils. Visual examination, electron microprobe analyses (EPMA), scanning electron microscopy (SEM) and electrochemical potentiokinetic reactivation (EPR) were concomitantly employed to investigate the problem. Studies revealed that the unprecedented degree of corrosion in ferritic stainless steel coils, during the short span of shipment time, was attributable to the ingress of sea water and its retention within the tight folds/ wraps of the steel coils during their shipment. The abundance of moisture and chloride (from the entrapped saline electrolyte) on the steel surface together with depleted O2 supply within the tight folds are presumed to have created conditions akin to an actively-corroding crevice, by way of passive film instability and its eventual breakdown on the stainless steel surface. As a consequence, the coils are believed to have suffered an accelerated and intensified chloride-induced corrosion attack and damage within the short span of shipment time. The investigations also revealed that the corrosive conditions were further exacerbated by the vulnerability and susceptibility of ferritic stainless steel to intergranular corrosion (IGC) due to its inherent sensitized condition. The paper thus throws light on an unusual precedent of chloride-induced corrosion in ferritic stainless steel and highlights the investigative metallographic work and corrosion failure analysis that led to above revelations.


2003 ◽  
Vol 8 (3) ◽  
pp. 184-193 ◽  
Author(s):  
V. V. Satyanarayana ◽  
G. Madhusudhan Reddy ◽  
T. Mohandas ◽  
G. Venkata Rao

2005 ◽  
Vol 473-474 ◽  
pp. 231-236 ◽  
Author(s):  
István Mészáros

Magnetic Barkhausen noise measurement (MBN) is a relatively new non-destructive detection technique. Its working principle is based on Barkhausen discontinuities or noise when a ferromagnetic material is subjected to a varying magnetic field. MBN is being used to characterise the stress state of a ferritic stainless steel (AISI 430). Other magnetic parameters such as saturation induction (BMax), remnant induction (BR), coercive field (HC) and maximal relative permeability (PMax) derived from the hysteresis loop have also been used to support the results achieved using MBN. Microstructural changes due to cold working and heat treatments were characterized by the applied magnetic measurements. The MBN technique was proved to be a useful non-destructive and quantitative method for microstuctural investigation of the investigated ferritic stainless steel.


Sign in / Sign up

Export Citation Format

Share Document