Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD

2010 ◽  
Vol 19 (6) ◽  
pp. 1155-1162 ◽  
Author(s):  
Shuo Yin ◽  
Xiao-fang Wang ◽  
Wen-ya Li ◽  
Bao-peng Xu
2005 ◽  
Vol 297-300 ◽  
pp. 1321-1326 ◽  
Author(s):  
Sang Yeob Oh ◽  
Hyung Seop Shin

The damage behaviors induced in a SiC by a spherical particle impact having a different material and size were investigated. Especially, the influence of the impact velocity of a particle on the cone crack shape developed was mainly discussed. The damage induced by a particle impact was different depending on the material and the size of a particle. The ring cracks on the surface of the specimen were multiplied by increasing the impact velocity of a particle. The steel particle impact produced the larger ring cracks than that of the SiC particle. In the case of the high velocity impact of the SiC particle, the radial cracks were generated due to the inelastic deformation at the impact site. In the case of the larger particle impact, the morphology of the damages developed were similar to the case of the smaller particle one, but a percussion cone was formed from the back surface of the specimen when the impact velocity exceeded a critical value. The zenithal angle of the cone cracks developed into the SiC decreased monotonically as the particle impact velocity increased. The size and material of a particle influenced more or less on the extent of the cone crack shape. An empirical equation was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of the cone crack. This equation will be helpful to the computational simulation of the residual strength in ceramic components damaged by the particle impact.


2012 ◽  
Vol 53 (6) ◽  
pp. 948-953 ◽  
Author(s):  
A. P. Alkhimov ◽  
V. F. Kosarev ◽  
S. V. Klinkov ◽  
A. A. Sova

2008 ◽  
Vol 203 (3-4) ◽  
pp. 364-371 ◽  
Author(s):  
P. Richer ◽  
A. Zúñiga ◽  
M. Yandouzi ◽  
B. Jodoin

2011 ◽  
Vol 704-705 ◽  
pp. 1112-1116
Author(s):  
Yu Liang Liu ◽  
Tian Ying Xiong ◽  
Jie Wu

Cold Gas Dynamic Spraying (CGDS) has been developed to fabricate surface coating as a new technique in recent years. In this paper, aluminum bronze particles were sprayed on 45 steel and 316L stainless steel by CGDS, and the coating was sucessfully fabricated on the surface of the steels. The microstructure of the coating and the interface between the coating and the substrate were investigated by scanning electron microscope (SEM), energy dispersive (EDX) and XRD. It was found that the coating was dense and its porosity was low, while the microhardness of the coating was lower than that of the bulk one; Mechanical bonding was the main formation mechanism of the coating, and there was metallurgical bonding too; Diffusion occured at the interface between the coating and substrate; α phase in aluminum bronze particles transformed to β phase after the spray and the transformation was induced by the plastic strain during spraying.


2006 ◽  
Vol 201 (6) ◽  
pp. 2109-2116 ◽  
Author(s):  
L. Ajdelsztajn ◽  
A. Zúñiga ◽  
B. Jodoin ◽  
E.J. Lavernia

Sign in / Sign up

Export Citation Format

Share Document