Microstructure of Aluminum Bronze Coating Sprayed by Cold Gas Dynamic Spraying (CGDS)

2011 ◽  
Vol 704-705 ◽  
pp. 1112-1116
Author(s):  
Yu Liang Liu ◽  
Tian Ying Xiong ◽  
Jie Wu

Cold Gas Dynamic Spraying (CGDS) has been developed to fabricate surface coating as a new technique in recent years. In this paper, aluminum bronze particles were sprayed on 45 steel and 316L stainless steel by CGDS, and the coating was sucessfully fabricated on the surface of the steels. The microstructure of the coating and the interface between the coating and the substrate were investigated by scanning electron microscope (SEM), energy dispersive (EDX) and XRD. It was found that the coating was dense and its porosity was low, while the microhardness of the coating was lower than that of the bulk one; Mechanical bonding was the main formation mechanism of the coating, and there was metallurgical bonding too; Diffusion occured at the interface between the coating and substrate; α phase in aluminum bronze particles transformed to β phase after the spray and the transformation was induced by the plastic strain during spraying.

2012 ◽  
Vol 53 (6) ◽  
pp. 948-953 ◽  
Author(s):  
A. P. Alkhimov ◽  
V. F. Kosarev ◽  
S. V. Klinkov ◽  
A. A. Sova

2008 ◽  
Vol 203 (3-4) ◽  
pp. 364-371 ◽  
Author(s):  
P. Richer ◽  
A. Zúñiga ◽  
M. Yandouzi ◽  
B. Jodoin

2006 ◽  
Vol 201 (6) ◽  
pp. 2109-2116 ◽  
Author(s):  
L. Ajdelsztajn ◽  
A. Zúñiga ◽  
B. Jodoin ◽  
E.J. Lavernia

2020 ◽  
Vol 62 (1-2) ◽  
pp. 90-94
Author(s):  
D. A. Gerashchenkov ◽  
A. Yu. Askinazi ◽  
M. L. Fedoseev ◽  
E. Yu. Gerashchenkova ◽  
A. M. Makarov

2014 ◽  
Vol 1004-1005 ◽  
pp. 747-750
Author(s):  
Sheng Qiang Feng ◽  
Cun Long Wang ◽  
Bing Ma ◽  
Lang Cui

The NiCoCrAlY+WC12Co coating with high density was prepared on the surface of the magnesium alloy by cold spraying. Effects of the WC12Co content on the wear behavior of coating were studied. The results showed that, under the dry friction condition, the weightlessness of wear of the coating with 20%WC12Co was smallest. The weightlessness of wear of the coating with 10%WC12Co was worse than that with 20%WC12Co. However, the weightlessness of wear of the coating without any WC12Co was worst among the three coatings. After the frictional experiment for 20 minutes, the weightlessness of wear of coating without any WC12Co was 10mg. Compared with that of coatings with 10%WC12Co and 20%WC12Co, the weightlessness of wear was lower than 35% and 54%, respectively. Obviously, the coating with 20%WC12Co had the capacity of the weightlessness of wear resistance. Consequently, the more the coating with WC12Co was, the higher the capacity of the weightlessness of wear resistance was.


Author(s):  
Viktor Matviychuk ◽  
Oleg Haidamak ◽  
Mykola Kolesnik

The article investigates changes in the characteristics of the surface layers of parts processed by methods of surface plastic deformation (SPD). It is shown that at SPD the strength and hardness characteristics of the material increase and residual compression stresses are formed. On the basis of the study of the stress-strain state of the material at the SPD, its non-monotonicity is established, which is manifested in the gradual change of sign of the components of deformations and stresses. In this regard, a tensor-nonlinear damage accumulation model was used to evaluate the deformability of the material, which takes into account the directional nature of the damage and the anisotropy of the plasticity of the deformed metal. Based on this model, an expression was obtained to determine the plasticity resource used in the case of multi-stage SPD. According to the results of the calculations, it is established that the maximum plasticity resource used in the SPD is at a depth of approximately 0.1 of the diameter of the plastic footprint of the tool, and destruction at full exhaustion of the plasticity resource occurs in the form of peeling of thin plates of appropriate thickness. Recommendations for displacement of the most reinforced layers to the surface of the workpiece are developed, as well as recommendations for limiting deformation by the amount of plasticity resource used. The conducted research allows to assign the optimal modes of SPD at the stage of technological process design. A device for cold gas-dynamic spraying was developed and the possibility of creating antifriction sections using it was investigated. Graphs of dependence of geometrical parameters of the deposited layer on the sputtering distance are constructed and methods and schemes of preparation for deposition of the surface of the workpiece using SPD methods are developed. Experimental cold gas-dynamic spraying was carried out and optimal parameters of the process of spraying of antifriction layers of bronze and metal polymers (pressure, and the temperature of the compressed air and the temperature of the workpiece) on the formed roller surface were determined. A new concept of increasing the contact strength and durability of friction pairs is proposed.


2019 ◽  
Vol 6 ◽  
pp. 25 ◽  
Author(s):  
Sunday Temitope Oyinbo ◽  
Tien-Chien Jen

Cold gas dynamic spraying (CGDS) is a relatively new technology of cold spraying techniques that uses converging-diverging (De Laval) nozzle at a supersonic velocity to accelerate different solid powders towards a substrate where it plastically deforms on the substrate. This deformation results in adhesion to the surface. Several materials with viable deposition capability have been processed through cold spraying, including metals, ceramics, composite materials, and polymers, thereby creating a wide range of opportunities towards harnessing various properties. CGDS is one of the innovative cold spraying processes with fast-growing scientific interests and industrial applications in the field of aerospace, automotive and biotechnology, over the past years. Cold gas spraying with a wide range of materials offers corrosion protection and results in increases in mechanical durability and wear resistance. It creates components with different thermal and electrical conductivities than that substrates would yield, or produces coatings on the substrate components as thermal insulators and high fatigue-strength coatings, and for clearance control, restoration and repairing, or prostheses with improved wear, and produces components with attractive appearances. This review extensively exploits the latest developments in the experimental analysis of CGDS processes. Cold gas dynamic spraying system, coating formation and deposit development, description of process parameter and principles, are summarized. Industrial applications and prospectives of CGDS in future research are also commented.


Sign in / Sign up

Export Citation Format

Share Document