Effect of Coating Thickness on Fatigue Behavior of AISI 1045 Steel with HVOF Thermal Spray and Hard Chrome Electroplating

2020 ◽  
Vol 29 (8) ◽  
pp. 1968-1981
Author(s):  
Vinh Phoi Nguyen ◽  
Thien Ngon Dang ◽  
Chi Cuong Le ◽  
Dung-An Wang
2010 ◽  
Vol 527 (24-25) ◽  
pp. 6551-6561 ◽  
Author(s):  
W.A. González-Hermosilla ◽  
D. Chicot ◽  
J. Lesage ◽  
J.G. La Barbera-Sosa ◽  
I.C. Gruescu ◽  
...  

2021 ◽  
Author(s):  
Juan Francisco Correa ◽  
Julio César Caicedo ◽  
Yesid Castro Aguilar

Abstract This current work evaluated the influence of Titanium Carbo-nitride (TiCN), Chromium Aluminum Nitride (CrAlN) and Boron Carbo-nitride (BCN) coatings deposited on AISI 1045 steel and its behavior in fatigue life. Suitable deposition parameters were established for the coatings to show high hardness onto the substrate, appropriate deposition time for polycrystalline growth and desired stoichiometry, as well as a stable layer thickness of ~ 3 µm. The physical and chemical properties of the coatings obtained were established by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and nanoindentation; the scanning electron microscopy (SEM) was used for the analysis of the fracture surfaces of the samples subjected to fatigue. The analysis of the fatigue behavior of the uncoated and coated substrates were performed under rotary bending conditions applying maximum alternating stresses in the interval of 55–70% of the ultimate strength value, i.e. from 479 to 610 MPa, respectively; the test was performed at room temperature. The study of the results established that the fatigue resistance properties increased for the three types of coated samples, TiCN, BCN and CrAlN, with values of 9.6%, 4.2% and 3.9%, respectively, calculated for 1x106 cycles. The highest value in fatigue life improvement corresponded to the TiCN coating, followed by BCN. This can be associated to the increase hardness present in the TiCN layer; this improved the mechanical properties of the coating. The examination of the fracture surfaces carried out in the tested samples (coated and uncoated), clearly demonstrate that the cracks produced by fatigue started in the surface of the coating and later propagated to the substrate. The mechanicals and fatigue results found in these ternary coatings deposited on AISI 1045 steel open a possibility of future applications in mechanical devices e.g. automotive applications that require high fatigue demands in service conditions.


2010 ◽  
Vol 205 (4) ◽  
pp. 1119-1126 ◽  
Author(s):  
E.S. Puchi-Cabrera ◽  
M.H. Staia ◽  
M.J. Ortiz-Mancilla ◽  
J.G. La Barbera-Sosa ◽  
E.A. Ochoa Pérez ◽  
...  

2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduardo da Rosa Vieira ◽  
Luciano Volcanoglo Biehl ◽  
Jorge Luis Braz Medeiros ◽  
Vagner Machado Costa ◽  
Rodrigo Jorge Macedo

AbstractQuench hardening aims at the microstructural transformation of steels in order to improve hardness and mechanical strength. The aim phase is, in most cases, the martensite. It is necessary to heat the material until it obtains its austenitization and quenching by immersion in a fluid. Currently, it is common to use watery polymeric solutions in this procedure. These fluids, which are the mixture of polymers in water, vary their thermal exchange capacity depending on the concentrations applied. The increase in concentration minimizes the removal of heat from the part, reducing the formation capacity of martensite, and developing a lower hardness and strong steel. In this work, microstructural characteristics and properties of AISI 1045 steel quenched in solutions based on polyvinylpyrrolidone (PVP) in 10, 15, 20, and 25% concentration were evaluated. The microstructural characterization quantified the percentage of the phases in each concentration, demonstrating a reduction of martensite as the concentrations were high. The investigation of the samples by x-ray diffraction confirmed the absence of austenite retained in the material. Furthermore, a microhardness scale between the core and the surface was constructed, in which a reduction gradient of the indices of this property towards the core of the sample was evidenced.


2018 ◽  
Vol 207 ◽  
pp. 02002
Author(s):  
Yaoke Wang ◽  
Meng Kou ◽  
Wei Ding ◽  
Huan Ma ◽  
Liangshan Xiong

When applying the non-parallel shear zone model to predict the cutting process parameters of carbon steel workpiece, it is found that there is a big error between the prediction results and the experimental values. And also, the former approach to obtain the relevant cutting parameters of the non-parallel shear zone model by applying coordinate transformation to the parallel shear zone model has a theoretical error – it erroneously regards the determinant (|J|) of the Jacobian matrix (J) in the coordinate transformation as a constant. The shape of the shear zone obtained when |J| is not constant is drew and it is found that the two boundaries of the shear zone are two slightly curved surfaces rather than two inclined planes. Also, the error between predicted values and experimental values of cutting force and cutting thrust is slightly smaller than that of constant |J|. A corrected model where |J| is a variable is proposed. Since the specific values of inclination of the shear zone (α, β), the thickness coefficient of the shear zone (as) and the constants related to the material (f0, p) are not given in the former work, a method to obtain the above-mentioned five constants by solving multivariable constrained optimization problem based on experimental data was also proposed; based on the obtained experimental data of AISI 1045 steel workpiece cutting force, cutting thrust, chip thickness, the results of five above-mentioned model constants are obtained. It is found that, compared with prediction from uncorrected model, the cutting force and cutting thrust of AISI 1045 steel predicted by the corrected model with the obtained constants has a better agreement with the experimental values obtained by Ivester.


1999 ◽  
Vol 338 (1-2) ◽  
pp. 177-184 ◽  
Author(s):  
Y.L. Su ◽  
S.H. Yao ◽  
C.S. Wei ◽  
W.H. Kao ◽  
C.T. Wu

Sign in / Sign up

Export Citation Format

Share Document