Preparation, Microstructure and Thermal Properties of Y2O3 Hollow-Sphere Composite Films

Author(s):  
YanXin Dan ◽  
Atsushi Nakamura ◽  
Hidetoshi Saitoh ◽  
Hua Li
2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


2017 ◽  
Vol 22 (3) ◽  
Author(s):  
Thayara Ceregatti ◽  
Paloma Pecharki ◽  
Wagner M. Pachekoski ◽  
Daniela Becker ◽  
Carla Dalmolin

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


2011 ◽  
Vol 233-235 ◽  
pp. 1726-1729
Author(s):  
Chun Guang Li ◽  
Rui Zhang ◽  
Yun Xia Li ◽  
Peng Fei Xu ◽  
Yan Qiu Wang

The biodegradable composite films were prepared from corn stalk microcrystalline cellulose as filler and polylactic acid (PLA) as polymeric matrix. The crystallinity, the tensile properties and the thermal properties of the composites were tested. The results show that the tensile properties and thermal properties were improved with the addition of corn stalk microcrystalline cellulose. When corn stalk microcrystalline cellulose account for 10% of the PLA quality, the initial decomposition temperature was raised by 34.38, tensile strength increased by 58.3% and elongation at break increased by 31.1% compared to those of pure PLA.


Sign in / Sign up

Export Citation Format

Share Document