Effect of growing media on seed germination and vigor in biofuel tree species

2014 ◽  
Vol 25 (4) ◽  
pp. 909-913 ◽  
Author(s):  
N. Mariappan ◽  
P. Srimathi ◽  
L. Sundaramoorthi ◽  
K. Sudhakar
AoB Plants ◽  
2015 ◽  
Vol 7 ◽  
Author(s):  
Risolandia Bezerra de Melo ◽  
Augusto César Franco ◽  
Clovis Oliveira Silva ◽  
Maria Teresa Fernandez Piedade ◽  
Cristiane Silva Ferreira

2014 ◽  
Vol 37 (1) ◽  
pp. 69-72
Author(s):  
Giriraj Panwar ◽  
Kumar Ambrish ◽  
S. Srivastava

Indopiptadenia oudhensis (Brandis) Brenan is an endangered tree species of family Mimosaceae. Species is mainly distributed at Indo-Nepal border and facing threats such as anthropogenic pressure, habitat destruction, over exploitation, low seed viability and poor seed germination.


2021 ◽  
Vol 27 (3) ◽  
pp. 162-166
Author(s):  
Abdul Azeez Hussain ◽  
◽  
Ramachandra Kurup Rajvikraman ◽  

Detailed study on seed storage and germination trailed in Knema attenuata (Wall. ex Hook. f. & Thomson) Warb.– the IUCN Red Listed ‘least concern’ medicinal tree species revealed that seeds were of recalcitrant nature. Viability of the seeds could be maintained for a longer period of up to 6 months with 47% Moisture content (mc) when kept in closed polycarbonate bottles at seed bank condition [20±20C Temp. and 40% Relative Humidity (RH)]. The 55% seed germination under normal climatic condition could be enhanced to a much higher percentage (75±5) inside the mist house chamber (34±30C Temp. and 70-80% RH).


2012 ◽  
Vol 22 (4) ◽  
pp. 287-298 ◽  
Author(s):  
Edgar E. Gareca ◽  
Filip Vandelook ◽  
Milton Fernández ◽  
Martin Hermy ◽  
Olivier Honnay

AbstractSeed germination is a crucial event in a plant's life cycle. Because temperature and water availability are important regulators of seed germination, this process will likely be influenced by global warming. Insight into the germination process under global warming is thus crucial, and requires the study of a wide range of water availability and temperature conditions. As hydrothermal time (HTT) models evaluate seed germination for any combination of water potential and temperature, they can be suitable to predict global warming effects on seed germination. We studied the germination characteristics of the high Andean endemic tree speciesPolylepis besseri(Rosaceae), using HTT models. We were especially interested in the potential effects of global warming on seed germination. Assembly of HTT models forP. besseriwas fairly straightforward due to the lack of a seed dormancy mechanism. The models allowed prediction ofPolylepisgermination under constant and alternating temperatures. Initially, a global warming induced increase in the field minimum and mean temperature will increaseP. besserigermination, but as maximum temperatures rise above the optimum temperature for the species, seed germination will become jeopardized. Effects of global warming on seed germination are currently considerably underexplored. HTT models prove to be useful tools to study a plant species' general germination characteristics, and how they may become affected under global warming. For the endemic mountain tree speciesP. besseri, we predict an increase, followed by a decrease of seed germination under global warming.


2010 ◽  
Vol 26 (6) ◽  
pp. 571-581 ◽  
Author(s):  
Susana Valencia-Díaz ◽  
Alejandro Flores-Palacios ◽  
Verónica Rodríguez-López ◽  
Elsa Ventura-Zapata ◽  
Antonio R. Jiménez-Aparicio

Abstract:Tree species are potential hosts for epiphytes; however in some forests epiphytes have a biased distribution among hosts. In a tropical dry forest of Mexico, previous research showed that there are trees with few epiphytes. It is possible that the bark of these hosts contain allelochemicals that influence epiphyte seed germination. The aims of this study were (1) to determine whether hosts with low epiphyte abundance (Ipomoea murucoides, I. pauciflora and Lysiloma acapulcense) would inhibit seed germination of Tillandsia recurvata through aqueous and organic bark extracts, (2) to determine whether germination of T. recurvata would differ among the hosts with low epiphyte abundance and a host with high epiphyte abundance (Bursera copallifera) and (3) to relate the chemical composition of organic bark extracts with inhibition of T. recurvata seed germination. Hexanic and dichloromethanic extracts were partially chemically characterized. Total phenolics and flavonoids concentrations of methanolic extracts were analysed. Aqueous and organic bark extracts from hosts with few epiphytes inhibited T. recurvata seed germination. Aqueous and dichloromethanic extracts of B. copallifera inhibited slightly the germination of T. recurvata. There was a positive correlation between concentration of flavonoids and inhibition of seed germination. Results suggest that a combination of compounds may be responsible for affecting the germination of T. recurvata. This study demonstrates the chemical effect of aqueous and organic bark extracts from hosts on germination of an epiphytic bromeliad.


2018 ◽  
Vol 13 (1) ◽  
pp. 137-148 ◽  
Author(s):  
Du Hyun Kim ◽  
Sim Hee Han

AbstractEffects on seed germination characteristics of 17 tree species were investigated under elevated temperature and CO2. Seeds of 5 needle-leaf and 12 broad-leaf species were germinated under four conditions: 24°C + 400 μmol CO2 mol air–1, 24°C + 750 μmol CO2 mol air–1, 27°C + 400 μmol CO2 mol air–1, and 27°C + 750 μmol CO2 mol air–1. The elevated temperature and CO2 affected germination percent (GP) of 7 tree species seeds.GPs of Pinus densiflora, P. thunbergii, Betula ermanii, and Maackia amurensisseeds were affected by the elevated temperature, while only that of P.jezoensis seed was influenced by the elevated CO2. GPs of Malus baccata and Zelkova serrataseeds were influenced by both the elevated temperature and CO2. In addition, the elevated temperature and CO2also affected mean germination time (MGT) of 12 tree species seeds. Particularly, MGTs of P. thunbergii and Rhododendron tschonoskii seeds were influenced by both factors. In conclusion, elevated temperature and CO2 affected seed germination characteristics, which were reflected by significant differences among tree species. Specifically, these two factors exerted stronger influence on germination pattern such as MGT rather than seed germination percent.


Sign in / Sign up

Export Citation Format

Share Document