Ground vegetation, forest floor and mineral topsoil in a clear-cutting and reforested Scots pine stands of different ages: a case study

Author(s):  
Dovilė Gustienė ◽  
Iveta Varnagirytė-Kabašinskienė ◽  
Vidas Stakėnas
2014 ◽  
Vol 16 (4) ◽  
pp. 732-742 ◽  

<div> <p>The natural regeneration of Scots pine stands at the Sarakatsana location in the Pieria Mountains improved considerably after the removal of the dense ground vegetation followed mechanical soil scarification. The experimental design consisted of replications on scarified and non-scarified soil. The results four years after the experiment was set up showed that regeneration reached 59 seedlings m-2 in scarified and 7 seedlings m-2 in non-scarified soil. Soil scarification seems to have had a positive effect on the emergence and survival of naturally regenerated Scots pine. The negligible number of dead seedlings in the first two measurements could be due to the favourable site and/or good climatic conditions. Although the mother stand appears to be in a critical condition due to age and increased necrosis as a result of fungal attacks, there is still considerable potential for regeneration in terms of fructification and seed production. The study findings indicate that there can be new growth of Scots pine forest with the shelterwood method of natural regeneration in combination with soil scarification.</p> </div> <p>&nbsp;</p>


2009 ◽  
Vol 46 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Remigijus Ozolinčius ◽  
Vidas Stakėnas ◽  
Iveta Varnagirytė-Kabašinskienė ◽  
Rasa Buožytė

2001 ◽  
Vol 1 ◽  
pp. 384-393 ◽  
Author(s):  
Kestutis Armolaitis ◽  
Vidas Stakenas

An area in Lithuania containing coniferous stands of Scots pine and Norway spruce that were dead or damaged due to nitrogen pollution by a nitrogen fertilizer plant (JV Achema) was found to have expanded between 1974 and 1989 to a distance of 20 to 25 km northeast of the plant in the direction of prevailing winds. Over the last 10 years, when nitrogen pollution by the plant had decreased, a clear process of recovery of the damaged ecosystems could be observed. The following features of this process as it occurred in damaged Scots pine stands are discussed: (1) refoliation (or decreased defoliation) of damaged trees, where a clear positive trend could be observed; (2) changes in the species composition and in the covering by ground vegetation, where small changes and indication of less-nitrophilous species coverage could be detected; and (3) chemical and acidity changes in Luvisols and Arenosols, where a significant decrease could be seen especially concerning nitrate concentrations.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 911 ◽  
Author(s):  
Laura Ķēniņa ◽  
Ieva Jaunslaviete ◽  
Līga Liepa ◽  
Daiga Zute ◽  
Āris Jansons

Old-growth forests are widely recognised for the benefits they provide for biodiversity; however, a more comprehensive understanding of their role in climate change mitigation must still be established to find the optimal balance between different forest ecosystem services at a national or regional scale. Very few studies have assessed carbon pools in old-growth Scots pine (Pinus sylvestris L.)-dominated boreal forests, and none have been conducted in hemiboreal forests. Therefore, we assessed the carbon storage of the living tree biomass, deadwood, forest floor (soil organic horizon, including all litter and decomposed wood), and mineral soil in 25 hemiboreal old-growth (163–218 years) unmanaged Scots pine stands in Latvia. The studied stands were without known records of any major natural or human-made disturbance in the visible past. Our results show, that the total ecosystem carbon pool (excluding ground vegetation) was 291.2 ± 54.2 Mg C ha−1, which was primarily composed of living tree biomass (59%), followed by mineral soil (31%), deadwood (5%), and the forest floor (5%). Within the studied stand age group, the total carbon pool remained stable; however, interchanges among the carbon pools, i.e., living biomass and laying deadwood, did occur.


1988 ◽  
Vol 53 ◽  
Author(s):  
C. De Schepper

The  study describes the natural regeneration state of a forest on coarse sandy  soils. The natural regeneration was studied in three different ecological  conditions: in 30 to 60 year old Scots pine stands, in a 62 year old mixed  stand of pedunculate oak and red oak, and on the free field.     The analysis of the regeneration groups revealed that the first settler  maintained a dominant social position during the following years after the  settlement. The structural basis is consequently laid out early. This means  that the forest practice has to consider the very first phase of the  regeneration as determining for the following evolution of the regeneration  groups.


1987 ◽  
Vol 52 ◽  
Author(s):  
N. Lust

In 70  years old homogeneous Scots pine stands, bordered by a hardwood belt, an  analysis was made about the spontaneous ingrowth of natural seedlings. The  analysis involved especially the following points: species and stem number,  influence of the hardwood belts, diameter and height distribution, age,  growth and structure. From the age of 30 years, a spontaneous regeneration of  hardwoods established in Scots pine stands. There are on average 7,000 plants  per ha, 80 % of which are black cherry and another fair number are red oak  and pedunculate oak. The regeneration has an average age of 25 to 30 years,  it is uneven aged, contains several diameter and height classes and has  already partially penetrated the upper stratum.     The spontaneous ingrowth allows to convert in a simple way the homogeneous  coniferous stands into mixed hardwood stands.


Sign in / Sign up

Export Citation Format

Share Document