scholarly journals Emerging immunological strategies: recent advances and future directions

Author(s):  
Hongyun Zhao ◽  
Fan Luo ◽  
Jinhui Xue ◽  
Su Li ◽  
Rui-Hua Xu

AbstractImmunotherapy plays a compelling role in cancer treatment and has already made remarkable progress. However, many patients receiving immune checkpoint inhibitors fail to achieve clinical benefits, and the response rates vary among tumor types. New approaches that promote anti-tumor immunity have recently been developed, such as small molecules, bispecific antibodies, chimeric antigen receptor T cell products, and cancer vaccines. Small molecule drugs include agonists and inhibitors that can reach the intracellular or extracellular targets of immune cells participating in innate or adaptive immune pathways. Bispecific antibodies, which bind two different antigens or one antigen with two different epitopes, are of great interest. Chimeric antigen receptor T cell products and cancer vaccines have also been investigated. This review explores the recent progress and challenges of different forms of immunotherapy agents and provides an insight into future immunotherapeutic strategies.

Antibodies ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 41 ◽  
Author(s):  
Strohl ◽  
Naso

The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4536-4536
Author(s):  
Jeong A Park ◽  
Hong Xu ◽  
Brian Santich ◽  
Nai-Kong V. Cheung

Abstract Introduction: T-cell based therapies have emerged as one of the major breakthroughs in anticancer treatment: Immune checkpoint inhibitors, chimeric antigen receptor gene-modified T-cells (CAR-T-cells), and T-cell engaging bispecific antibodies (BsAb) are leading the advances. In the era of personalized medicine, T-cells offer alternative strategies to overcome resistance to chemotherapy or small molecules. Yet, hurdles for such therapy can be crippling, such as inability of T cells to infiltrate "cold tumors", cytokine release syndrome following T cell-based therapies, neurologic toxicity, and on-target off-tumor effects. To address these hurdles, polyclonal T-cells armed with GD2xCD3 or HER2xCD3 BsAb for cytotherapy hold promise. Ganglioside GD2 and HER2 are tumor associated surface antigens expressed in a broad spectrum of aggressive malignancies, while being restricted in normal tissues. Phase I trials of T-cells armed with a chemical conjugate of hu3F8 x mouse OKT3 (NCT02173093) or trastuzumab x mouse OKT3 (NCT00027807) demonstrated the safety of 160 x 106/kg/injection x 8 doses (or 1.28 x 109/cycle) with suggestion of clinical benefit. Here, we report the safety and efficacy of adoptive T-cell therapy armed with the recombinant forms of these BsAb for the treatment of GD2(+) and/or HER2(+) tumors in preclinical models. Methods: Recombinant anti-GD2 BsAb and anti-HER2 BsAb were made using the IgG(L)-scFv platform (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from normal volunteer donors were isolated, activated and expanded by CD3/CD28 beads in the presence of 100 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T cells (ATCs) were harvested and armed for 20 minutes at room temperature with -GD2-BsAb or HER2-BsAb. After washing, armed ATCs were tested for cell surface density of BsAb and antibody dependent T cell mediated cytotoxicity (ADTC) in vitro. In vivo anti-tumor potencies of armed T cells were tested against GD2(+) or HER2(+) cell lines or patient derived xenografts (PDXs) in BALB-Rag2-/-IL-2R-γϲ-KO (DKO) mice. Results: GD2-BsAb of the IgG(L)-scFv form showed superior potency over other bispecific platforms in vitro and in vivo. GD2-BsAb or HER2-BsAb armed ATCs showed potent antigen-specific cytotoxicity against GD2 or HER2 positive tumors such as neuroblastoma, melanoma and osteosarcoma in vitro over a range of antibody dose (5 to 500 ng/106 cells). Optimal arming per T cell required 25,000 to 45,000 idiotype(+) molecules. There was no evidence of activation induced cell death when confronted by antigen or tumor target. In vivo GD2-BsAb or HER2-BsAb armed ATCs could ablate neuroblastoma, malignant melanoma, and osteosarcoma tumors over a range of cell doses (10x106, 20x106 and 40x106 per injection, one to three times a week for 2 to 4 weeks) with a range of BsAb doses (5 ng to 500 ng/million of T-cells) without significant toxicities in DKO mice. By immunohistochemistry, the frequency of tumor infiltrating CD3(+) T-cells strongly correlated with tumor response. Conclusions: Using the IgG(L)-scFv format, GD2-BsAb or HER2-BsAb armed ATCs could provide a potent and economical cytotherapy platform against GD2(+) or HER2(+) tumors without the complexity of gene modification (as in chimeric antigen receptor modified T cells). At such low arming doses, where BsAb is T cell bound, where ADTC is not induced, and T cell expansion is not required for anti-tumor effect, clinical toxicity is expected to be low. Disclosures Cheung: Ymabs: Patents & Royalties.


Immunotherapy ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 1341-1357
Author(s):  
Nashwa El-Khazragy ◽  
Sherief Ghozy ◽  
Passant Emad ◽  
Mariam Mourad ◽  
Diaaeldeen Razza ◽  
...  

Taking advantage of the cellular immune system is the mainstay of the adoptive cell therapy, to induce recognition and destruction of cancer cells. The impressive demonstration of this principle is chimeric antigen receptor-modified T (CAR-T)-cell therapy, which had a major impact on treating relapsed and refractory hematological malignancies. Despite the great results of the CAR-T-cell therapy, many tumors are still able to avoid immune detection and further elimination, as well as the possible associated adverse events. Herein, we highlighted the recent advances in CAR-T-cell therapy, discussing their applications beneficial functions and side effects in hematological malignancies, illustrating the underlying challenges and opportunities. Furthermore, we provide an overview to overcome different obstacles using potential manufacture and treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document