Extraction of phenolic compounds from tomato pomace using choline chloride–based deep eutectic solvents

Author(s):  
Viktoria Vorobyova ◽  
Margarita Skiba ◽  
Georgii Vasyliev
Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 242 ◽  
Author(s):  
Jeniffer Torres-Vega ◽  
Sergio Gómez-Alonso ◽  
José Pérez-Navarro ◽  
Edgar Pastene-Navarrete

Peumus boldus Mol., is a Chilean medicinal tree used for gastrointestinal and liver diseases. Such medicinal properties are associated with the presence of bioactive flavonoids and aporphine alkaloids. In this study, a new green and efficient extraction method used seven natural deep eutectic solvents (NADES) as extraction media. The extraction efficiency of these NADES was assessed, determining the contents of boldine and total phenolic compounds (TPC). Chemical profiling of P. boldus was done by high-performance liquid chromatography coupled to photo diode array detector and electrospray ion-trap mass spectrometry (HPLC-PDA-ESI-IT/MS) and electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF-MS). Among the NADES tested, NADES4 (choline chloride-lactic acid) and NADES6 (proline-oxalic acid) enable better extraction of boldine with 0.427 ± 0.018 and 2.362 ± 0.055 mg of boldine g−1 of plant, respectively. Extraction of boldine with NADES4 and NADES6 was more efficient than extractions performed with methanol and water. On the other hand, the highest TPC were obtained using NADES6, 179.442 ± 3.79 mg of gallic acid equivalents (GAE g−1). Moreover, TPC in extracts obtained with methanol does not show significant differences with NADES6. The HPLC-PAD-MS/MS analysis enable the tentative identification of 9 alkaloids and 22 phenolic compounds. The results of this study demonstrate that NADES are a promising green extraction media to extract P. boldus bioactive compounds and could be a valuable alternative to classic organic solvents.


2021 ◽  
Vol 258 ◽  
pp. 117975
Author(s):  
José Pedro Wojeicchowski ◽  
Caroline Marques ◽  
Luciana Igarashi-Mafra ◽  
João A.P. Coutinho ◽  
Marcos R. Mafra

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1781
Author(s):  
Sofia Chanioti ◽  
Maria Katsouli ◽  
Constantina Tzia

Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2192
Author(s):  
Jeniffer Torres-Vega ◽  
Sergio Gómez-Alonso ◽  
José Pérez-Navarro ◽  
Julio Alarcón-Enos ◽  
Edgar Pastene-Navarrete

Chemical profiling of Buddleja globosa was performed by high-performance liquid chromatography coupled to electrospray ionization (HPLC-DAD-ESI-IT/MS) and quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF/MS). The identification of 17 main phenolic compounds in B. globosa leaf extracts was achieved. Along with caffeoyl glucoside isomers, caffeoylshikimic acid and several verbascoside derivatives (β-hydroxyverbascoside and β-hydroxyisoverbascoside) were identified. Among flavonoid compounds, the presence of 6-hydroxyluteolin-7-O-glucoside, quercetin-3-O-glucoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside was confirmed. Campneoside I, forsythoside B, lipedoside A and forsythoside A were identified along with verbascoside, isoverbascoside, eukovoside and martynoside. The isolation of two bioactive phenolic compounds verbascoside and forsythoside B from Buddleja globosa (Buddlejaceae) was successfully achieved by centrifugal partition chromatography (CPC). Both compounds were obtained in one-step using optimized CPC methodology with the two-phase solvent system comprising ethyl acetate-n-butanol-ethanol-water (0.25: 0.75: 0.1: 1, v/v). Additionally, eight Natural Deep Eutectic Solvents (NADESs) were tested for the extraction of polyphenols and compared with 80% methanol. The contents of verbascoside and luteolin 7-O-glucoside after extraction with 80% methanol were 26.165 and 3.206 mg/g, respectively. Among the NADESs tested in this study, proline- citric acid (1:1) and choline chloride-1, 2- propanediol (1:2) were the most promising solvents. With these NADES, extraction yields for verbascoside and luteolin 7-O-glucoside were 51.045 and 4.387 mg/g, respectively. Taken together, the results of this study confirm that CPC enabled the fast isolation of bioactive polyphenols from B. globosa. NADESs displayed higher extraction efficiency of phenolic and therefore could be used as an ecofriendly alternative to classic organic solvents.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1619 ◽  
Author(s):  
Maša Islamčević Razboršek ◽  
Milena Ivanović ◽  
Peter Krajnc ◽  
Mitja Kolar

For the isolation of selected phenolic compounds from dried chokeberries, natural deep eutectic solvents (NADESs) were investigated as a green alternative to conventionally used extraction solvents. Four types of NADESs were synthesised, with choline chloride as the hydrogen bond acceptor in combination with different hydrogen bond donors (sugars, organic acid and urea). Ultrasound-assisted extraction was used to improve the extractability of the phenolic compounds and the results were compared to those obtained with 80% methanol as the extraction media. The highest values of total phenols and total flavonoids were found in the extract obtained with choline chloride–fructose NADES (36.15 ± 3.39 mg gallic acid g−1 dry weight (DW) and 4.71 ± 0.33 mg rutin g−1 DW, respectively). The extraction recoveries for the individual phenolic compounds depended strongly on the phenolic compound’s structure, with relative mean values between 70% and 97%.


2018 ◽  
Vol 115 ◽  
pp. 261-271 ◽  
Author(s):  
Vanessa Vieira ◽  
Miguel A. Prieto ◽  
Lillian Barros ◽  
João A.P. Coutinho ◽  
Isabel C.F.R. Ferreira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document