Genetic diversity and population structure assessment of Chinese Senna obtusifolia L. by molecular markers and morphological traits of seed

2017 ◽  
Vol 40 (1) ◽  
Author(s):  
Renjun Mao ◽  
Pengguo Xia ◽  
Jingling Liu ◽  
Xin Li ◽  
Ruilian Han ◽  
...  
2020 ◽  
Vol 71 (2) ◽  
pp. 155
Author(s):  
Djihad Bellemou ◽  
Teresa Millàn ◽  
Juan Gil ◽  
Aissa Abdelguerfi ◽  
Meriem Laouar

Assessment of genetic diversity among chickpea (Cicer arietinum L.) germplasm at the morphological and molecular levels is fundamental for chickpea breeding and conservation of genetic resources. Genetic variability of 46 chickpea genotypes including 42 Algerian genotypes and four control varieties was evaluated by using 15 agro-morphological traits. Eleven molecular markers including nine simple sequence repeats, one sequence characterised amplified region (SCY17) and one gene-specific (CaETR4) were used to characterise the 46 genotypes and eight references varieties added for disease resistance or susceptibility. Genotypes resistant to ascochyta blight were identified by the markers SCY17 and CaETR4 present together. High diversity was observed for all measured morphological traits between genotypes. Yield components, plant height, phenological traits and growth habit were the traits most involved in variation among genotypes and were partitioned into four groups by using principal component analysis. All molecular markers were polymorphic. In total, 91 alleles were obtained ranging from 2 to 21 per locus with average of 8.27 alleles per marker. Polymorphism information content ranged from 0.58 to 0.99 with an average value of 0.87. UPGMA clustering and Bayesian-based model structure analysis grouped genotypes into two clusters, but the distribution of the genotypes by cluster was not the same for the two analyses. According to the presence of markers indicating resistance to ascochyta blight (SCY17 and CaETR4), three resistant genotypes (FLIP 82-C92, ILC 6909, ILC 7241) were selected and should be tested in controlled conditions for confirmation. Considering the narrow diversity of cultivated chickpea, the Algerian genotypes can be considered as interesting for future breeding programs.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


2012 ◽  
Vol 298 (9) ◽  
pp. 1701-1710 ◽  
Author(s):  
Maria Luisa Savo Sardaro ◽  
Maroun Atallah ◽  
Maurizio Enea Picarella ◽  
Benedetto Aracri ◽  
Mario A. Pagnotta

2010 ◽  
Vol 60 (4) ◽  
pp. 203-210 ◽  
Author(s):  
M. G. Ásbjarnardóttir ◽  
T. Kristjánsson ◽  
M. B. Jónsson ◽  
J. H. Hallsson

3 Biotech ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Esmaeil Khaleghi ◽  
Karim Sorkheh ◽  
Maryam Hosseni Chaleshtori ◽  
Sezai Ercisli

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 66 ◽  
Author(s):  
Javier Monzón

Previous genetic studies of eastern coyotes (Canis latrans) are based on one of two strategies: sampling many individuals using one or very few molecular markers, or sampling very few individuals using many genomic markers. Thus, a regional analysis of genetic diversity and population structure in eastern coyotes using many samples and several molecular markers is lacking. I evaluated genetic diversity and population structure in 385 northeastern coyotes using 16 common single nucleotide polymorphisms (SNPs). A region-wide analysis of population structure revealed three primary genetic populations, but these do not correspond to the same three subdivisions inferred in a previous analysis of mitochondrial DNA sequences. More focused geographic analyses of population structure indicated that ample genetic structure occurs in coyotes from an intermediate contact zone where two range expansion fronts meet. These results demonstrate that genotyping several highly heterozygous SNPs in a large, geographically dense sample is an effective way to detect cryptic population genetic structure. The importance of SNPs in studies of population and wildlife genomics is rapidly increasing; this study adds to the growing body of recent literature that demonstrates the utility of SNPs ascertained from a model organism for evolutionary inference in closely related species.


2017 ◽  
Vol 5 (2) ◽  
pp. 149-159 ◽  
Author(s):  
Y. El Kharrassi ◽  
M.A. Mazri ◽  
M.H. Sedra ◽  
A. Mabrouk ◽  
B . Nasser ◽  
...  

The genetic diversity within and among 124 accessions of Opuntia spp. collected from different regions of Morocco was assessed using morphological descriptors and molecular markers. Based on 10 morphological traits, the accessions were separated into 3 main clusters; each cluster was containing accessions from different regions and species. Polymerase chain reaction (PCR) was then performed on 22 accessions from different regions and species, with 10 inter-simple sequence repeat (ISSR) primers and one random amplified polymorphic DNA (RAPD) primer. ISSR primers produced 66 bands overall, 64 (96.9 %) of which were polymorphic while 6 bands were generated by the RAPD marker, all polymorphic. The polymorphic information content (PIC) values ranged from 0.62 to 0.97, with an average of 0.82. The dendrogram of genetic differences generated using the unweighted pair-group method using arithmetic averages (UPGMA) method showed 7 different clusters at a similarity of 0.76, which was confirmed by the principal component analysis (PCA). The main conclusion of our work is the high genetic similarity between Opuntia ficus indica and Opuntia megacantha species in Morocco. Our results will be useful for plant breeding and genetic resource conservation programs.


Sign in / Sign up

Export Citation Format

Share Document