On the limit drawing ratio of magnetron sputtered aluminium–scandium foils within micro deep drawing

2010 ◽  
Vol 4 (5) ◽  
pp. 451-456 ◽  
Author(s):  
Frank Vollertsen ◽  
Zhenyu Hu ◽  
Heinz-Rolf Stock ◽  
Bernd Koehler
2018 ◽  
Vol 190 ◽  
pp. 15001 ◽  
Author(s):  
Julien Kovac ◽  
Lukas Heinrich ◽  
Bernd Koehler ◽  
Andreas Mehner ◽  
Brigitte Clausen ◽  
...  

Al-Sc-Zr alloys are interesting for the production of high strength micro components by micro deep drawing. These alloys show a good hardenability due to the formation of nanometer-scale spheroidal Al3(Sc, Zr) precipitates, which are highly coherent with the aluminum matrix. However, the formation of these precipitates in Al-Sc-Zr foils fabricated by conventional metallurgical methods dramatically reduces their ductility and drawability. In this work, magnetron sputtering was used to produce Al-Sc-Zr foils and Al-Sc-Zr / stainless steel bimetallic foils which are nearly free of these precipitates. Tensile tests were carried out to measure and compare the mechanical properties of monometallic Al-Sc-Zr foils and bimetallic Al-Sc-Zr / stainless steel foils deposited with varying plasma target powers and containing different volume fractions (layer thickness) of Al-Sc-Zr. Micro deep drawing was used to determine the drawability of selected monometallic and bimetallic foils. The results show that the density of monometallic Al-Sc-Zr foils can be improved significantly by increasing the DC target power and by using the high power impulse magnetron sputtering (HiPIMS) technology, resulting in foils with higher ductility. Bimetallic foils achieved higher strength and ductility than monometallic Al-Sc-Zr foils. Their mechanical properties vary with the target power and the volume fraction (thickness) of Al-Sc-Zr. The limit drawing ratio of HiPIMS deposited monometallic foil was 1.7 or 1.8 depending on the side of the foil facing the die, whereas a limit drawing ratio of 1.9 was observed for bimetallic foils.


2011 ◽  
Vol 473 ◽  
pp. 1008-1015 ◽  
Author(s):  
Zhen Yu Hu ◽  
Hanna Wielage ◽  
Frank Vollertsen

Due to size effects new challenges are involved in micro deep drawing compared to macro deep drawing. One of these challenges is that the limit drawing ratio in micro deep drawing becomes smaller than that in macro forming, which limits the application potential of micro deep drawing in an industrial context. In order to extend the application possibilities of micro deep drawing, investigations were carried out on this topic. Own previous work showed that the “tribological effect”, the “global flow behaviour effect” and the “local flow behaviour effect” are responsible for the lower forming limit in the micro range. In this paper, the flow behavior of thin foils is further investigated. Forming limit diagrams of Al99.5 and E-Cu foils with different thicknesses ranging from 20 μm to 100 μm were acquired using an optical measurement system. It was found that the forming limit of thin foils is lower than that of thicker foils. Further analysis indicates that this difference is due to the number of grains in the direction of thickness of the material: more grains give more grain boundaries, which allows more strain of the grains.


2011 ◽  
Vol 105-107 ◽  
pp. 344-347
Author(s):  
Fung Huei Yeh ◽  
Ching Lun Li ◽  
Kun Nan Tsay

This paper presents an explicit dynamic finite element method (FEM) in conjunction with the forming limit diagram (FLD) to analyze the forming limit for the SPCC foil in micro deep drawing of square cup. In the present study, the tensile, anisotropic and friction test are performed to obtain the material parameters of the alloy foil according to the ASTM standards. Importing these properties, the numerical analysis is conducted by the explicit dynamic FEM. The FLD in numerical simulation is used as the criterion of the forming limit in micro deep drawing of the square cup. The forming limit, punch load-stroke relationship, deformed shape and thickness distribution of square cup, are discussed and compared with the experimental results. It shows that a good agreement is achieved from comparison between simulated and experimental results. The limit drawing ratio in micro deep drawing of square cup is 2.08 in this paper. From this investigation, the results of this paper can be used as reference in the relative researches and applications of micro forming.


2011 ◽  
Vol 702-703 ◽  
pp. 48-51
Author(s):  
Jae Hyung Cho ◽  
Sang Su Jeong ◽  
Suk Bong Kang

Evolution of texture and microstructure during deep drawing of ZK60 wrought magnesium alloys were investigated using EBSD (electron backscatter diffraction). ZK60 (Mg-5.5Zn-0.6Zr) alloys were prepared through both direct chill casting (DC) and twin-roll strip casting (TRC). Deep drawing tests were carried out under various working temperature and drawing speeds. The diameters of the sheets and punch were 74 mm and 37 mm, and overall limit drawing ratio was 2. Texture and microstructure evolution was examined with various working condition. The DC samples had larger grains than TRC samples, and thus more twins were observed in the DC samples.


2011 ◽  
Vol 418-420 ◽  
pp. 1364-1367
Author(s):  
Jian Qing Qian ◽  
Ji Ping Chen ◽  
Hai Fan Qian

The influence of hardening index n value at different holding forces on LDR of cylinder cup was simulated by the finite element software PAM-STAMP 2G. The results showed that the limit drawing ratio of the sheet metal decreased with the increase of the blank holder force. There was little influence of hardening index n value on the limit drawing ratio at smaller blank holder force. The influence of hardening index n value on the limit drawing ratio increased with the increase of the blank holder force. The hardening index n value could be increased to increase the limit drawing ratio when the blank holder force is large.


2012 ◽  
Vol 433-440 ◽  
pp. 660-665
Author(s):  
Fung Huei Yeh ◽  
Ching Lun Li ◽  
Kun Nan Tsay

This paper presents an explicit dynamic finite element method (FEM) in conjunction with the forming limit diagram (FLD) to analyze the forming limit for the various arc radii of punch in micro deep drawing of square cup. In the present study, the tensile test and friction test are performed to obtain the material parameters of the electro-deposited copper foil according to the ASTM standards. Importing these properties, the numerical analysis is conducted by the explicit dynamic FEM. The FLD in numerical simulation is used as the criterion of the forming limit in micro deep drawing of the square cup. The forming limit, deformed shape, punch load-stroke relationship, height of cup and thickness distribution of square cup, are discussed and compared with the experimental results. It shows that a good agreement is achieved from comparison between simulated and experimental results. When the arc radii of punch increase with Rp=0.2, 0.5 and 0.8mm, the limit drawing ratio increases from 1.90 to 2.03 and 2.10. The forming limit of square cup increases with an increase of the arc radii of punch. From this investigation, the results of this paper can be used as reference in the relative researches and applications of micro forming.


2011 ◽  
Vol 189-193 ◽  
pp. 2539-2542
Author(s):  
Ji Ping Chen ◽  
Jian Qing Qian ◽  
Sheng Zhi Li

The limit drawing ratios of the steel sheets are studied by the numerical simulation using the finite element software PAM-STAMP 2G. The limit drawing ratios of the steel sheets are also measured by the practical Swift cup test. The results of the experiments and the simulations are compared and analyzed. The results show that the overall shapes of the deep drawing parts of the experiment and the simulation are roughly the same. The maximum deviation of limit drawing ratio values between the experimental results and the simulations for two steel sheets with various thicknesses is only 2.2%. The deviation of limit drawing ratio of steel sheet obtained through PAM-STAMP FEM software is small. The PAM-STAMP software is highly reliable for the steel sheet deep drawing simulation.


Sign in / Sign up

Export Citation Format

Share Document