Non-stationary signal denoising using Time-Frequency curve surface fitting

2007 ◽  
Vol 24 (6) ◽  
pp. 776-781 ◽  
Author(s):  
Xiaofeng Liu ◽  
Shuren Qin ◽  
Lin Bo
Author(s):  
Hui Sun ◽  
Shouqi Yuan ◽  
Yin Luo ◽  
Bo Gong

Cavitation has negative influence on pump operation. In order to detect incipient cavitation effectively, experimental investigation was conducted to through acquisition of current and vibration signals during cavitation process. In this research, a centrifugal pump was modeled for research. The data was analyzed by HHT method. The results show that Torque oscillation resulted from unsteady flow during cavitation process could result in energy variation. Variation regulation of RMS of IMF in current signal is similar to that in axial vibration signal. But RMS of IMF in current signal is more sensitive to cavitation generation. It could be regarded as the indicator of incipient cavitation. RMS variation of IMF in base, radial, longitudinal vibration signals experiences an obvious increasing when cavitation gets severe. Such single variation regulation could be selected as the indicator of cavitation stage recognition. Hilbert-Huang transform is suitable for transient and non-stationary signal process. Time-frequency characteristics could be extracted from results of HHT process to reveal pump operation condition. The contents of current work could provide valuable references for further research on centrifugal pump operation detection.


2006 ◽  
Vol 324-325 ◽  
pp. 835-838
Author(s):  
Aleš Belšak ◽  
Jože Flašker

A crack in the tooth root, which often leads to failure in gear unit operation, is the most undesirable damage caused to gear units. This article deals with fault analyses of gear units with real damages. Numerical simulations of real operating conditions have been used in relation to the formation of those damages. A laboratory test plant has been used and a possible damage can be identified by monitoring vibrations. The influences of defects of a single-stage gear unit upon the vibrations they produce are presented. Signal analysis has been performed also in concern to a non-stationary signal, using the Time Frequency Analysis tools. Typical spectrograms, which are the result of reactions to damages, are a very reliable indication of the presence of damages.


2021 ◽  
Author(s):  
Behnaz Ghoraani

Most of the real-world signals in nature are non-stationary, i.e., their statistics are time variant. Extracting the time-varying frequency characteristics of a signal is very important in understanding the signal better, which could be of immense use in various applications such as pattern recognition and automated-decision making systems. In order to extract meaningful time-frequency (TF) features, a joint TF analysis is required. The proposed work is an attempt to develop a generalized TF analysis methodology that exploits the benefits of TF distribution (TFD) in pattern classification systems as related to discriminant feature detection and classification. Our objective is to introduce a unique and efficient way of performing non-stationary signal analysis using adaptive and discriminant TF techniques. To fulfill this objective, in the first point, we build a novel TF matrix (TFM) decomposition that increases the effectiveness of segmentation in real-world signals. Instantaneous and unique features are extracted from each segment such that they successfully represent joint TF structure of the signal. In the second point, based on the above technique, two unique and novel discriminant TF analysis methods are proposed to perform an improved and discriminant feature selection of any non-stationary signals. The first approach is a new machine learning method that identifies the clusters of the discriminant features to compute the presence of the discriminative pattern in any given signal, and classify them accordingly. The second approach is a discriminant TFM (DTFM) framework, which is a combination of TFM decomposition and the discriminant clustering techniques. The developed DTFM analysis automatically identifies the differences between different classes as the distinguishing structure, and uses the identified structure to accurately classify and locate the discriminant structure in the signal. The theoretical properties of the proposed approaches pertaining to pattern recognition and detection are examined in this dissertation. The extracted TF features provide strong and successful characterization and classification of real and synthetic non-stationary signals. The proposed TF techniques facilitate the adaptation of TF quantification to any feature detection technique in automating the identification process of discriminatory TF features, and can find applications in many different fields including biomedical and multimedia signal processing.


2013 ◽  
Vol 385-386 ◽  
pp. 1389-1393 ◽  
Author(s):  
Lin Chai ◽  
Jun Ru Sun

Extracting voltage flicker from the sampling voltage signal is a precondition for management of flicker. Voltage flicker signal is a low frequency time-varying non-stationary signal. The traditional fourier transform has great limitations when analyze the non-stationary signal for not having the time resolution. As wavelet transform has good property of time-frequency localization, it become a powerful tool for analyze this kind of signal. This paper adopts multi-resolution analysis of wavelet to extract voltage flicker signal. Furthermore, according to the characteristics of wavelet function, this paper selects Daubechies wavelet to accomplish the multi-level decomposition and reconstruction of signal, in order to get the frequency and amplitude of voltage flicker signals. Based on the principle of modulus maximum, it can be determined what time the voltage flicker happen and over. The results of MATLAB simulation indicate that voltage flicker signal can be effectively extracted by wavelet multi-resolution analysis. Wavelet multi-resolution analysis is considerably ideal for voltage flicker extraction.


2021 ◽  
Author(s):  
Marko Njirjak ◽  
Erik Otović ◽  
Dario Jozinović ◽  
Jonatan Lerga ◽  
Goran Mauša ◽  
...  

<p>The analysis of non-stationary signals is often performed on raw waveform data or on Fourier transformations of those data, i.e., spectrograms. However, the possibility of alternative time-frequency representations being more informative than spectrograms or the original data remains unstudied. In this study, we tested if alternative time-frequency representations could be more informative for machine learning classification of seismic signals. This hypothesis was assessed by training three well-established convolutional neural networks, using nine different time-frequency representations, to classify seismic waveforms as earthquake or noise. The results were compared to the base model, which was trained on the raw waveform data. The signals used in the experiment were seismogram instances from the LEN-DB seismological dataset (Magrini et al. 2020). The results demonstrate that Pseudo Wigner-Ville and Wigner-Ville time-frequency representations yield significantly better results than the base model, while Margenau-Hill performs significantly worse (P < .01). Interestingly, the spectrogram, which is often used in non-stationary signal analysis, did not yield statistically significant improvements. This research could have a notable impact in the field of seismology because the data that were previously hidden in the seismic noise are now classified more accurately. Moreover, the results might suggest that alternative time-frequency representations could be used in other fields which use non-stationary time series to extract more valuable information from the original data. The potential fields encompass different fields of geophysics, speech recognition, EEG and ECG signals, gravitational waves and so on. This, however, requires further research.</p>


2020 ◽  
Vol 51 (3) ◽  
pp. 52-59 ◽  
Author(s):  
Xiao-bin Fan ◽  
Bin Zhao ◽  
Bing-xu Fan

In order to overcome the shortcomings (such as the time–frequency localization and the nonstationary signal analysis ability) of the Fourier transform, time–frequency analysis has been carried out by wavelet packet decomposition and reconstruction according to the actual nonstationary vibration signal from a large equipment located in a large Steel Corporation in this article. The effect of wavelet decomposition on signal denoising and the selection of high-frequency weight coefficients for each layer on signal denoising were analyzed. The nonlinear prediction of the chaotic time series was made by global method, local method, weighted first-order local method, and maximum Lyapunov exponent prediction method correspondingly. It was found the multi-step prediction method is better than other prediction methods.


Sign in / Sign up

Export Citation Format

Share Document