Data-driven optimal switching and control of switched systems

Author(s):  
Chi Zhang ◽  
Minggang Gan ◽  
Chenchen Xue
2019 ◽  
Vol 356 (10) ◽  
pp. 5193-5221 ◽  
Author(s):  
Minggang Gan ◽  
Chi Zhang ◽  
Jingang Zhao

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1287
Author(s):  
Chi Zhang ◽  
Minggang Gan ◽  
Jingang Zhao ◽  
Chenchen Xue

In this paper, a data-driven optimal scheduling approach is investigated for continuous-time switched systems with unknown subsystems and infinite-horizon cost functions. Firstly, a policy iteration (PI) based algorithm is proposed to approximate the optimal switching policy online quickly for known switched systems. Secondly, a data-driven PI-based algorithm is proposed online solely from the system state data for switched systems with unknown subsystems. Approximation functions are brought in and their weight vectors can be achieved step by step through different data in the algorithm. Then the weight vectors are employed to approximate the switching policy and the cost function. The convergence and the performance are analyzed. Finally, the simulation results of two examples validate the effectiveness of the proposed approaches.


2021 ◽  
Vol 11 (4) ◽  
pp. 1829
Author(s):  
Davide Grande ◽  
Catherine A. Harris ◽  
Giles Thomas ◽  
Enrico Anderlini

Recurrent Neural Networks (RNNs) are increasingly being used for model identification, forecasting and control. When identifying physical models with unknown mathematical knowledge of the system, Nonlinear AutoRegressive models with eXogenous inputs (NARX) or Nonlinear AutoRegressive Moving-Average models with eXogenous inputs (NARMAX) methods are typically used. In the context of data-driven control, machine learning algorithms are proven to have comparable performances to advanced control techniques, but lack the properties of the traditional stability theory. This paper illustrates a method to prove a posteriori the stability of a generic neural network, showing its application to the state-of-the-art RNN architecture. The presented method relies on identifying the poles associated with the network designed starting from the input/output data. Providing a framework to guarantee the stability of any neural network architecture combined with the generalisability properties and applicability to different fields can significantly broaden their use in dynamic systems modelling and control.


2021 ◽  
pp. 110924
Author(s):  
Gulai Shen ◽  
Zachary E. Lee ◽  
Ali Amadeh ◽  
K. Max Zhang

Author(s):  
Nurali Virani ◽  
Devesh K. Jha ◽  
Zhenyuan Yuan ◽  
Ishana Shekhawat ◽  
Asok Ray

This paper addresses the problem of learning dynamic models of hybrid systems from demonstrations and then the problem of imitation of those demonstrations by using Bayesian filtering. A linear programming-based approach is used to develop nonparametric kernel-based conditional density estimation technique to infer accurate and concise dynamic models of system evolution from data. The training data for these models have been acquired from demonstrations by teleoperation. The trained data-driven models for mode-dependent state evolution and state-dependent mode evolution are then used online for imitation of demonstrated tasks via particle filtering. The results of simulation and experimental validation with a hexapod robot are reported to establish generalization of the proposed learning and control algorithms.


Sign in / Sign up

Export Citation Format

Share Document