Rapid Urbanization Induced Extensive Forest Loss to Urban Land in the Guangdong-Hong Kong-Macao Greater Bay Area, China

2021 ◽  
Vol 31 (1) ◽  
pp. 93-108
Author(s):  
Chao Yang ◽  
Huizeng Liu ◽  
Qingquan Li ◽  
Aihong Cui ◽  
Rongling Xia ◽  
...  
2021 ◽  
Author(s):  
Wenxin Zhang ◽  
Zihao Cheng ◽  
Xianfeng Liu ◽  
Gangte Lin ◽  
Junan He ◽  
...  

<p>Mulberry-based fish ponds are representative traditional eco-agriculture in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). Investigations about the changes in such ponds and their relevant water environment under the background of rapid urbanization can provide a reference for the protection and development of these ponds. Using the Landsat images obtained after 1986, this study employed supervised classification and visual interpretation approaches and water intensity index as well as calculating synthesized index to identify the spatial patterns of changes in Mulberry-based fish ponds in the GBA. The results indicated that the year of 2013 was the inflection point of fish pond changes, which can also be proved by calculating synthesized index. The causes to the changes in fish ponds were further explored from four aspects: land use change, industrial transfer, government guidance and financial motives.</p>


2019 ◽  
Vol 11 (15) ◽  
pp. 1834 ◽  
Author(s):  
Shu Zhang ◽  
Chuanglin Fang ◽  
Wenhui Kuang ◽  
Fengyun Sun

Urban land use/cover and efficiency are important indicators of the degree of urbanization. However, research about comparing their changes at the megaregion level is relatively rare. In this study, we depicted the differences and inequalities of urban land and efficiency among megaregions in China using China’s Land Use/cover Dataset (CLUD) and China’s Urban Land Use/cover Dataset (CLUD-Urban). Furthermore, we analyzed regional inequality using the Theil index. The results indicated that the Guangdong-Hong Kong-Macao Great Bay Area had the highest proportion of urban land (8.03%), while the Chengdu-Chongqing Megaregion had the highest proportion of developed land (64.70%). The proportion of urban impervious surface area was highest in the Guangdong-Hong Kong-Macao Great Bay Area (75.16%) and lowest in the Chengdu-Chongqing Megaregion (67.19%). Furthermore, the highest urban expansion occurred in the Yangtze River Delta (260.52 km2/a), and the fastest period was 2000–2010 (298.19 km2/a). The decreasing Theil index values for the urban population and economic density were 0.305 and 1.748, respectively, in 1980–2015. This study depicted the development trajectory of different megaregions, and will expect to provide a valuable insight and new knowledge on reasonable urban growth modes and sustainable goals in urban planning and management.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xueling Tan ◽  
Suning Liu ◽  
Yong Tian ◽  
Zhaoqiang Zhou ◽  
Yao Wang ◽  
...  

Climate change and land use/cover change (LUCC) have been widely recognized as the main driving forces that can affect regional hydrological processes, and quantitative assessment of their impacts is of great importance for the sustainable development of regional ecosystems, land use planning and water resources management. This study investigates the impacts of climate change and LUCC on variables such as streamflow (SF), soil moisture (SM) and evapotranspiration (ET) in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) by using Soil and Water Assessment Tools (SWAT) model under different scenarios during 1979–2018. The results show that the simulation performances were overall good, with Nash-Sutcliffe Efficiency Coefficient (NSE) and coefficient of determination (R2) greater than 0.80 for the monthly-scale SF calibration and validation. According to the results of trend and change point tests of meteorological series, the baseline period (1979–1997) and the interference period (1998–2018) were determined. Interestingly, other land use types were basically converted to urban land, leading to a rapid urbanization in the GBA. Compared with the SF values of the eight estuaries of the Pearl River Basin in the baseline period, both climate change and LUCC has led to the decrease in the SF values in the interference period, and the combined effect of climate change and LUCC was slightly greater than their individual effect. Overall, climate change and LUCC both have important impacts on regional hydrological processes in the GBA.


2020 ◽  
Vol 12 (17) ◽  
pp. 6846
Author(s):  
Jinyuan Ma ◽  
Fan Jiang ◽  
Liujian Gu ◽  
Xiang Zheng ◽  
Xiao Lin ◽  
...  

This study analyzes the patterns of university co-authorship networks in the Guangdong-Hong Kong-Macau Greater Bay Area. It also examines the quality and subject distribution of co-authored articles within these networks. Social network analysis is used to outline the structure and evolution of the networks that have produced co-authored articles at universities in the Greater Bay Area from 2014 to 2018, at both regional and institutional levels. Field-weighted citation impact (FWCI) is used to analyze the quality and citation impact of co-authored articles in different subject fields. The findings of the study reveal that university co-authorship networks in the Greater Bay Area are still dispersed, and their disciplinary development is unbalanced. The study also finds that, while the research areas covered by high-quality co-authored articles fit the strategic needs of technological innovation and industrial distribution in the Greater Bay Area, high-quality research collaboration in the humanities and social sciences is insufficient.


2021 ◽  
Vol 13 (4) ◽  
pp. 2002
Author(s):  
Ke Huang ◽  
Martin Dallimer ◽  
Lindsay C. Stringer ◽  
Anlu Zhang ◽  
Ting Zhang

Urbanization involves expansion of the amount of land covered by urban uses. Rural to urban land conversion (RULC) can satisfy demand for the additional space that growing cities require. However, there can be negative consequences, such as the loss of productive agricultural land and/or the destruction of natural habitats. Considerable interest therefore exists among policy makers and researchers regarding how the efficiency of RULC can be maximized. We used the Gini index and a data envelopment analysis to quantify the relationship between RULC and economic development for 17 metropolitan areas in China. We did this from two perspectives: (i) coordination; and (ii) efficiency. We found that economic agglomeration fosters the coordination of the amount of rural land that is allocated to be converted to urban uses. Similarly, economic agglomeration increases the efficiency of RULC in terms of the processes of socio-economic production. Through production technology innovation and readjustment in the scale of input factors, the productive efficiency of RULC can be promoted. Our findings suggest a need to strictly limit the amount of RULC, design differential land management policies according to location and development level, and adjust RULC allocation between different cities. Further, in harnessing the potential of intensive urban land use and restructuring, production factors, including land, can be enhanced through technological innovation. Research presented in this paper provides insights for areas of the world which are yet to undergo the rapid urbanization that China has experienced, but where it is projected to occur over the coming decades.


2021 ◽  
Vol 13 (11) ◽  
pp. 6374
Author(s):  
Yang Lu ◽  
Jiansi Yang ◽  
Song Ma

Local climate zones (LCZs) emphasize the influence of representative geometric properties and surface cover characteristics on the local climate. In this paper, we propose a multi-temporal LCZ mapping method, which was used to obtain LCZ maps for 2005 and 2015 in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), and we analyze the effects of LCZ changes in the GBA on land surface temperature (LST) changes. The results reveal that: (1) The accuracy of the LCZ mapping of the GBA for 2005 and 2015 is 85.03% and 85.28%, respectively. (2) The built type category showing the largest increase in area from 2005 to 2015 is LCZ8 (large low-rise), with a 1.01% increase. The changes of the LCZs also vary among the cities due to the different factors, such as the economic development level and local policies. (3) The area showing a warming trend is larger than the area showing a cooling trend in all the cities in the GBA study area. The main reasons for the warming are the increase of built types, the enhancement of human activities, and the heat radiation from surrounding high-temperature areas. (4) The spatial morphology changes of the built type categories are positively correlated with the LST changes, and the morphological changes of the LCZ4 (open high-rise) and LCZ5 (open midrise) built types exert the most significant influence. These findings will provide important insights for urban heat mitigation via rational landscape design in urban planning management.


Sign in / Sign up

Export Citation Format

Share Document