scholarly journals Potassium carbonate-based ternary transition temperature mixture (deep eutectic analogues) for CO2 absorption: Characterizations and DFT analysis

Author(s):  
Hosein Ghaedi ◽  
Payam Kalhor ◽  
Ming Zhao ◽  
Peter T. Clough ◽  
Edward J. Anthony ◽  
...  

AbstractIs it possible to improve CO2 solubility in potassium carbonate (K2CO3)-based transition temperature mixtures (TTMs)? To assess this possibility, a ternary transition-temperature mixture (TTTM) was prepared by using a hindered amine, 2-amino-2-methyl-1,3-propanediol (AMPD). Fourier transform infrared spectroscopy (FT-IR) was employed to detect the functional groups including hydroxyl, amine, carbonate ion, and aliphatic functional groups in the prepared solvents. From thermogravimetric analysis (TGA), it was found that the addition of AMPD to the binary mixture can increase the thermal stability of TTTM. The viscosity findings showed that TTTM has a higher viscosity than TTM while their difference was decreased by increasing temperature. In addition, Eyring’s absolute rate theory was used to compute the activation parameters (∆G*, ∆H*, and ∆S*). The CO2 solubility in liquids was measured at a temperature of 303.15 K and pressures up to 1.8 MPa. The results disclosed that the CO2 solubility of TTTM was improved by the addition of AMPD. At the pressure of about 1.8 MPa, the CO2 mole fractions of TTM and TTTM were 0.1697 and 0.2022, respectively. To confirm the experimental data, density functional theory (DFT) was employed. From the DFT analysis, it was found that the TTTM + CO2 system has higher interaction energy (|∆E|) than the TTM + CO2 system indicating the higher CO2 affinity of the former system. This study might help scientists to better understand and to improve CO2 solubility in these types of solvents by choosing a suitable amine as HBD and finding the best combination of HBA and HBD.

Author(s):  
Mamadou Yeo ◽  
Mougo André Tigori ◽  
Amadou Kouyaté ◽  
Paulin Marius Niamien ◽  
Albert Trokourey

Currently, research in the area of corrosion inhibition is focussed on the development of green corrosion inhibitors. It is with this in mind that pyridoxine hydrochloride, which is vitamin B6, has been tested as a corrosion inhibitor of aluminium in 1M HCl by mass loss, Density Functional Theory (DFT) and Quantitative Structure-Property Relationship (QSPR) methods. The results obtained show that the inhibition efficiency increases with concentration but decreases with increasing temperature. This vitamin is adsorbed on aluminium according to the modified Langmuir isotherm and occurs in two modes: physisorption and chemisorption. Thermodynamic adsorption and activation parameters have been determined and discussed. Finally, QSPR approach was used to find the best set of parameters in order to determine the theoretical inhibition efficiencies from the experimental data. Experimental measurements were found in good collaboration with the theoretical results.


2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.


2018 ◽  
Vol 15 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Mohamed K. Awad ◽  
Mahmoud F. Abdel-Aal ◽  
Faten M. Atlam ◽  
Hend A. Hekal

Aim and Objective: Synthesis of new .-aminophosphonates containing quinazoline moiety through Kabachnik-Fields reaction in the presence of copper triflate catalyst [32], followed by studying their antimicrobial activities and in vitro anticancer activities against liver carcinoma cell line (HepG2) with the hope that new anticancer agents could be developed. Also, the quantum chemical calculations are performed using density functional theory (DFT) to study the effect of the changes of molecular and electronic structures on the biological activity of the investigated compounds. Materials and Method: The structures of the synthesized compounds are confirmed by FT-IR, 1H NMR, 13C NMR, 31P NMR and MS spectral data. The synthesized compounds show significant antimicrobial and also remarkable cytotoxicity anticancer activities against liver carcinoma cell line (HepG2). Density functional theory (DFT) was performed to study the effect of the molecular and electronic structure changes on the biological activity. Results: It was found that the electronic structure of the substituents affects on the reaction yield. The electron withdrawing substituent, NO2 group 3b, on the aromatic aldehydes gave a good yield more than the electron donating substituent, OH group 3c. The electron deficient on the carbon atom of the aldehydic group may increase the interaction of the Lewis acid (Cu(OTf)2) and the Lewis base (imine nitrogen), and accordingly, facilitate the formation of imine easily, which is attacked by the nucleophilic phosphite species to give the α- aminophosphonates. Conclusion: The newly synthesized compounds exhibit a remarkable inhibition of the growth of Grampositive, Gram-negative bacteria and fungi at low concentrations. The cytotoxicity of the synthesized compounds showed a significant cytotoxicity against the liver cancer cell line (HepG 2). Also, it was shown from the quantum chemical calculations that the electron-withdrawing substituent increases the biological activity of the α-aminophosphonates more than the electron donating group which was in a good agreement with the experimental results. Also, a good agreement between the experimental FT-IR and the calculated one was found.


2021 ◽  
Vol 46 ◽  
pp. 146867832110274
Author(s):  
Yasmen M Moghazy ◽  
Nagwa MM Hamada ◽  
Magda F Fathalla ◽  
Yasser R Elmarassi ◽  
Ezzat A Hamed ◽  
...  

Reactions of aryl 1-(2,4-dinitronaphthyl) ethers with piperidine in dimethyl sulfoxide at 25oC resulted in substitution of the aryloxy group at the ipso carbon atom. The reaction was measured spectrophotochemically and the kinetic studies suggested that the titled reaction is accurately third order. The mechanism is began by fast nucleophilic attack of piperidine on C1 to form zwitterion intermediate (I) followed by deprotonation of zwitterion intermediate (I) to the Meisenheimer ion (II) in a slow step, that is, SB catalysis. The regular variation of activation parameters suggested that the reaction proceeded through a common mechanism. The Hammett equation using reaction constant σo values and Brønsted coefficient value showed that the reaction is poorly dependent on aryloxy substituent and the reaction was significantly associative and Meisenheimer intermediate-like. The mechanism of piperidinolysis has been theoretically investigated using density functional theory method using B3LYP/6-311G(d,p) computational level. The combination between experimental and computational studies predicts what mechanism is followed either through uncatalyzed or catalyzed reaction pathways, that is, SB and SB-GA. The global parameters of the reactants, the proposed activated complexes, and the local Fukui function analysis explained that C1 carbon atom is the most electrophilic center of ether. Also, kinetics and theoretical calculation of activation energies indicated that the mechanism of the piperidinolysis passed through a two-step mechanism and the proton transfer process was the rate determining step.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Yun Tian ◽  
Oliver Gutfleisch ◽  
Olle Eriksson ◽  
Levente Vitos

AbstractTetragonal ($${\hbox{L1}}_{0}$$ L1 0 ) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order–disorder transition temperature ($$\approx {593}$$ ≈ 593  K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties. We find that small amount of non-magnetic (Al and Ti) or magnetic (Cr and Co) elements increase the order–disorder transition temperature. Adding Mo to the Co-doped system further enhances the ordering temperature while the Curie temperature is decreased only by a few degrees. Our results show that alloying is a viable route to stabilizing the ordered tetragonal phase of FeNi.


2004 ◽  
Vol 82 (2) ◽  
pp. 113-119 ◽  
Author(s):  
William R Barton ◽  
Leo A Paquette

Reaction of N-substituted bromomethanesulfonamides with 2 equiv of potassium carbonate and an α-halo ketone, ester, or nitrile leads directly to 3-substituted β-sultams. The first step is intermolecular and is followed by an intramolecular alkylation. The process is particularly efficient when diethyl bromomalonate and 3-chloro-2-butanone are involved. In the latter example, no competitive cyclization to form a six-membered ring is seen. The functional groups in certain of the β-sultam products can be subsequently manipulated to give bicyclic products.Key words: β-sultams, intramolecular SN2 displacement, sulfonamides, ring closing metathesis, four-membered heterocycles.


2012 ◽  
Vol 557-559 ◽  
pp. 973-978
Author(s):  
Zhong Yi Xu ◽  
Lei Du ◽  
Li Qiang Wan ◽  
Fa Rong Huang

A novel linear benzoxazine-containing polytriazole was successfully synthesized via metal-free click reaction. Benefited from the advantages of click reaction, the synthesis procedure was easily and efficiently. The linear polymer could be transformed into crosslinked structure after ring-opening polymerization of oxazine induced by the increasing temperature. The FT-IR characterization verified the structure transformation between linear and crosslinked polymer. Moreover, the thermal properties and thermal degradation behaviors of linear polymer and the corresponding crosslinked polymer were studied by DSC and TGA. The novel polytriazole was proved to be a kind of thermal stable polymers with high thermal decomposition temperature (Td5over 300°C).


Sign in / Sign up

Export Citation Format

Share Document