Enhancement of transglutaminase production in Streptomyces mobaraensis DSM 40587 by non-nutritional stress conditions: Effects of heat shock, alcohols, and salt treatments

2012 ◽  
Vol 29 (7) ◽  
pp. 913-917 ◽  
Author(s):  
Lili Zhang ◽  
Lanwei Zhang ◽  
Huaxi Yi ◽  
Ming Du ◽  
Yingchun Zhang ◽  
...  
Author(s):  
L.Ye. Kozeko ◽  
◽  
E.L. Kordyum ◽  

Mitochondrial heat shock proteins of HSP70 family support protein homeostasis in mitochondria under normal and stress conditions. They provide folding and complex assembly of proteins encoded by mitochondrial genome, as well as import of cytosolic proteins to mitochondria, their folding and protection against aggregation. There are reports about organ-specificity of mitochondrial HSP70 synthesis in plants. However, tissue specificity of their functioning remains incompletely characterized. This problem was studied for mitochondrial AtHSP70-10 in Arabidopsis thaliana seedlings using a transgenic line with uidA signal gene under normal conditions, as well as high temperature and water deficit. Under normal conditions, histochemical GUS-staining revealed the expression of AtHSP70-10 in cotyledon and leaf hydathodes, stipules, central cylinder in root differentiation and mature zones, as well as weak staining in root apex and root-shoot junction zone. RT-PCR analysis of wild-type seedlings exposed to 37°C showed rapid upregulation of AtHSP70-10, which reached the highest level within 2 h. In addition, the gradual development of water deficit for 5 days caused an increase in transcription of this gene, which became more pronounced after 3 days and reached a maximum after 5 days of dehydration. Histochemical analysis showed complete preservation of tissue localization of AtHSP70-10 expression under both abiotic factors. The data obtained indicate the specific functioning of mitochondrial chaperone AtHSP70-10 in certain plant cellular structures.


2021 ◽  
Author(s):  
Avishek Roy ◽  
Ranjan Tamuli

Abstract Heat shock proteins (Hsps) are molecular chaperones and required for survival of organisms under heat stress conditions. In this study, we studied Hsp80, a member of the Hsp90 family, in Neurospora crassa. The expression of hsp80 was severely reduced in the N. crassa calcineurin B subunit RIP-mutant (cnb-1RIP) strains under the heat shock conditions. Furthermore, the expression levels of cnb-1, hsp60, hsp80, and the calcineurin-regulated transcription factor crz-1 were increased, but expression levels were reduced in the presence of the calcineurin inhibitor FK506 under the heat shock stress in the N. crassa wild type. Therefore, the calcineurin-crz-1 signaling pathway transcriptionally regulates hsp60 and hsp80 under the heat shock stress condition in N. crassa. In addition, the transcript levels of trm-9 and nca-2, a Ca2+ sensor and a Ca2+ ATPase, respectively, were increased under the heat shock stress condition. Moreover, the expression of the hsp80, but not the hsp60, was reduced in the Δtrm-9, Δnca-2, and the Δtrm-9 Δnca-2 double mutants. These results suggested that hsp80, trm-9, and nca-2 play a role in coping the heat shock stress in N. crassa. We found that CRZ-1 binds to 5ʹ-CCTTCACA-3ʹ and 5ʹ-AGCGGAGC-3ʹ 8 bp nucleotide sequences, located about 1075 bp and 679 bp upstream of the ATG start codon, respectively, of hsp80. We also found that CRZ-1 binds to an 8 bp nucleotide sequence 5ʹ-ACCGCGCC-3ʹ, located 234 bp upstream of the ATG start codon of nca-2 under Ca2+ stress condition. Thus, cnb-1, hsp60, hsp80, and crz-1 are involved in the heat shock stress response in N. crassa. Moreover, CRZ-1 upregulates the expressions of hsp80 and nca-2 under the heat shock stress and Ca2+ stress conditions, respectively, in N. crassa.


2018 ◽  
Vol 19 (11) ◽  
pp. 3441 ◽  
Author(s):  
Teresa Jagla ◽  
Magda Dubińska-Magiera ◽  
Preethi Poovathumkadavil ◽  
Małgorzata Daczewska ◽  
Krzysztof Jagla

Heat shock proteins (Hsps) form a large family of evolutionarily conserved molecular chaperones that help balance protein folding and protect cells from various stress conditions. However, there is growing evidence that Hsps may also play an active role in developmental processes. Here, we take the example of developmental expression and function of one class of Hsps characterized by low molecular weight, the small Hsps (sHsps). We discuss recent reports and genome-wide datasets that support vital sHsps functions in the developing nervous system, reproductive system, and muscles. This tissue- and time-specific sHsp expression is developmentally regulated, so that the enhancer sequence of an sHsp gene expressed in developing muscle, in addition to stress-inducible elements, also carries binding sites for myogenic regulatory factors. One possible reason for sHsp genes to switch on during development and in non-stress conditions is to protect vital developing organs from environmental insults.


2008 ◽  
Vol 86 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Aliakbar Taherian ◽  
Patrick H. Krone ◽  
Nick Ovsenek

Hsp90 chaperone complexes function in assembly, folding, and activation of numerous substrates. The 2 vertebrate homologues encoded by the genes hsp90a and hsp90b are differentially expressed in embryonic and adult tissues and during stress; however, it is not known whether they possess identical functional activities in chaperone complexes. This question was addressed by examining potential differences between the Hsp90 isoforms with respect to both cochaperone and substrate interactions. Epitope-tagged proteins were expressed in mammalian cells or Xenopus oocytes and subjected to immunoprecipitation with an array of cochaperones. Both isoforms were shown to participate equally in multichaperone complexes, and no significant differences in cochaperone distribution were observed. The substrates Raf-1, HSF1, Cdc37, and MEK1 interacted with both Hsp90α and Hsp90β, and the relative patterns of these interactions were not affected by heat shock. The substrate kinases c-Src, CKIIB, A-raf, and Erk interacted with both isoforms; however, significantly more Hsp90α was recovered after heat shock. The data demonstrate that Hsp90α and Hsp90β exhibit similar interactions with cochaperones, but significantly different behaviors with respect to substrate interactions under stress conditions. These results reveal both functional similarities and key functional differences in the individual members of this protein family.


2014 ◽  
Vol 26 (1) ◽  
pp. 197
Author(s):  
E. D. Souza ◽  
F. B. E. Paula ◽  
C. C. R. Quintao ◽  
J. H. M. Viana ◽  
L. T. Iguma ◽  
...  

The 90-kDa heat shock protein (HSP90) is a chaperone that is important for maintaing protein homeostasis under stress conditions. HSP90 seems also to be required for maturation of Xenopus oocytes (Fisher et al. 2000 EMBO J. 19, 1516) and first cleavage of mouse zygotes (Audouard et al. 2011 PloS One 6, e17109). This study aimed to evaluate the effect of inhibition of HSP90 by 17-(allylamino)-17-demethoxygeldanamycin (17AAG, Sigma St. Louis, MO, USA) during in vitro maturation (IVM) on bovine oocyte developmental competence. Immature cumulus–oocyte complexes (COC) were randomly allocated in 3 treatments during IVM: T0 (control; n = 240), no HSP90 inhibitor; T1: 2 μM HSP90 inhibitor (17AAG; n = 250) for the first 12 h of IVM; and T2: 2 μM HSP90 inhibitor (n = 188) for 24 h of IVM. In vitro maturation was performed in Nunc plates containing 400 μL of TCM-199 medium (Invitrogen, Carlsbad, CA, USA) supplemented with porcine FSH (Hertape Calier, Juatuba, Brazil) and 10% oestrus cow serum under 5% CO2, 95% humidity, and 38.5°C for 24 h. Oocytes were in vitro fertilized for 20 h and incubated under the same IVM conditions. Semen was processed by Percoll gradient (Nutricell, Campinas, Brazil) an IVF performed with 2 × 106 spermatozoa mL–1. Presumptive zygotes were completely denuded in a PBS solution with hyaluronidase and then cultured in wells with 500 μL of modified CR2aa medium supplemented with 2.5% fetal calf serum (Nutricell) in an incubator at 38.5°C under 5% CO2, 5% O2, 90% N2, and saturated humidity. Cleavage rate was evaluated 72 h post-fertilization and blastocyst rates were evaluated at Day 7 and Day 8. Data from 6 repetitions were analysed by generalized linear model procedure of SAS software (version 9.1; SAS Institute Inc., Cary, NC, USA), and means were compared by Student-Newman-Keuls test. Values are shown as mean ± s.e.m. There was a tendency (P = 0.08) for a lower cleavage rate in T2 (52.6 ± 5.8%) than in T0 (control; 74.2 ± 4.1%). Inhibition of HSP90 by 17AAG for 12 h and 24 h of IVM (T1 and T2, respectively) decreased blastocyst rates at Day 7 (20.4 ± 3.0% and 14.3 ± 2.6%, respectively; P < 0.01) and Day 8 (22.6 ± 4.1% and 16.9 ± 2.7%, respectively; P < 0.05) when compared with control (T0 = 31.8 ± 2.5% and 34.1 ± 2.9% for Day 7 and Day 8, respectively). In addition, the inhibition of HSP90 for 24 h decreased (P < 0.05) the proportion of hatched blastocysts at Day 8 (9.5 ± 5.0% for T2, respectively) when compared with control (T0 = 35.8 ± 3.9%), indicating a reduction on embryo quality. In conclusion, inhibition of HSP90 by 17AAG during IVM results in lower developmental competence, suggesting that this protein is also important for bovine oocytes. Further studies are required to investigate if the role of HSP90 on developmental competence of bovine oocyte is affected when under stress conditions. The authors acknowledge CNPq 473484/2011-0, FAPEMIG and FAPES for financial support.


2020 ◽  
Vol 124 (5) ◽  
pp. 482-489
Author(s):  
Raphaela Castro Georg ◽  
Letícia Harumi Oshiquiri ◽  
Jomal Rodrigues Barbosa-Filho ◽  
Suely Lopes Gomes

2013 ◽  
Vol 430 (4) ◽  
pp. 1259-1264 ◽  
Author(s):  
Masafumi Sakono ◽  
Arata Utsumi ◽  
Tamotsu Zako ◽  
Tetsuya Abe ◽  
Masafumi Yohda ◽  
...  

1984 ◽  
Vol 62 (9) ◽  
pp. 837-846 ◽  
Author(s):  
Herb B. LéJohn ◽  
Cleantis E. Braithwaite

When the temperature of exponentially growing cells of the coenocytic fungus Achlya klebsiana strain 1969 was suddenly elevated from 24 to 37 °C (thermal stress), synthesis of at least 12 preexisting proteins (heat-shock proteins, HSPs) was vigorously induced while synthesis of most other cell proteins declined transiently. After 2–3 h of thermal stress, the cells recovered and resumed normal protein synthesis. If the cells were first starved of nutrients (nutritional stress) before the temperature was raised to 37 °C, the same 12 HSPs were induced, but synthesis of both heat-shock-inducible and nonheat-shock proteins declined to trace levels after 4 h of thermal stress. Molecular weights (MW) of the HSPs were approximately 96 000a, 96 000b, 85 000, 72 000, 70 000, 69 000a, 69 000b, 68 000, 60 000, 52 000, 26 000a, and 26 000b, and they had similar isoelectric points (5.8–6.2). Nutritionally stressed cells showed an induced synthesis of some 28 proteins (nutritional stress proteins, NSPs), when they were not heat shocked, and an induced synthesis of 20 NSPs when heat shocked. In the presence of glutamine, nutritionally stressed cells induced the synthesis of 15 NSPs when they were not heat shocked and 17 NSPs when they were heat shocked. The NSPs and HSPs were electrophoretically different proteins. Glutamine did not affect the induction pattern of the HSPs, but it arrested reproductive development of starving cells while altering the pattern of NSP synthesis. Since actinomycin D inhibited the induced synthesis of HSPs and some NSPs, they may be under transcriptional control. In vitro translation of poly(A)+ RNAs from heat-shocked cells showed that these cells were rich in HSP mRNAs and poor in NSP mRNAs. We speculate that NSPs, but not HSPs, may play a role in reproductive development and sporulation in this fungus.


Sign in / Sign up

Export Citation Format

Share Document