scholarly journals Cell cycle transition under stress conditions controlled by vertebrate heat shock factors

2001 ◽  
Vol 20 (11) ◽  
pp. 2885-2895 ◽  
Author(s):  
A. Nakai
Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 915
Author(s):  
Jinglei Wang ◽  
Haijiao Hu ◽  
Wuhong Wang ◽  
Qingzhen Wei ◽  
Tianhua Hu ◽  
...  

Plant heat shock factors (Hsfs) play crucial roles in various environmental stress responses. Eggplant (Solanum melongena L.) is an agronomically important and thermophilic vegetable grown worldwide. Although the functions of Hsfs under environmental stress conditions have been characterized in the model plant Arabidopsis thaliana and tomato, their roles in responding to various stresses remain unclear in eggplant. Therefore, we characterized the eggplant SmeHsf family and surveyed expression profiles mediated by the SmeHsfs under various stress conditions. Here, using reported Hsfs from other species as queries to search SmeHsfs in the eggplant genome and confirming the typical conserved domains, we identified 20 SmeHsf genes. The SmeHsfs were further classified into 14 subgroups on the basis of their structure. Additionally, quantitative real-time PCR revealed that SmeHsfs responded to four stresses—cold, heat, salinity and drought—which indicated that SmeHsfs play crucial roles in improving tolerance to various abiotic stresses. The expression pattern of SmeHsfA6b exhibited the most immediate response to the various environmental stresses, except drought. The genome-wide identification and abiotic stress-responsive expression pattern analysis provide clues for further analysis of the roles and regulatory mechanism of SmeHsfs under environmental stresses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Taehoon Kim ◽  
Shafina Samraj ◽  
Juan Jiménez ◽  
Celina Gómez ◽  
Tie Liu ◽  
...  

Abstract Background Heat shock factors (Hsfs) and Heat shock proteins (Hsps) belong to an essential group of molecular regulators involved in controlling cellular processes under normal and stress conditions. The role of Hsfs and Hsps is well known in model plant species under diverse stress conditions. While plants Hsfs are vital components of the signal transduction response to maintain cellular homeostasis, Hsps function as chaperones helping to maintain folding of damaged and newly formed proteins during stress conditions. In lettuce (Lactuca sativa), a highly consumed vegetable crop grown in the field and in hydroponic systems, the role of these gene families in response to artificial light is not well characterized. Results Using a genome-wide analysis approach, we identified 32 Hsfs and 22 small heat shock proteins (LsHsps) in lettuce, some of which do not have orthologs in Arabidopsis, poplar, and rice. LsHsp60s, LsHsp90s, and LsHsp100s are highly conserved among dicot and monocot species. Surprisingly, LsHsp70s have three times more members than Arabidopsis and two times more than rice. Interestingly, the lettuce genome triplication did not contribute to the increased number of LsHsp70s genes. The large number of LsHsp70s was the result of genome tandem duplication. Chromosomal distribution analysis shows larger tandem repeats of LsHsp70s genes in Chr1, Chr7, Chr8, and Chr9. At the transcriptional level, some genes of the LsHsfs, LsHsps, LsHsp60s, and LsHsp70s families were highly responsive to UV and high intensity light stress, in contrast to LsHsp90s and LsHsp100s which did not respond to a light stimulus. Conclusions Our genome-wide analysis provides a detailed identification of Hsfs and Hsps in lettuce. Chromosomal location and syntenic region analysis together with our transcriptional analysis under different light conditions provide candidate genes for breeding programs aiming to produce lettuce varieties able to grow healthy under hydroponic systems that use artificial light.


2018 ◽  
Author(s):  
Jolly M. Saju ◽  
Mohammad Sorowar Hossain ◽  
Woei Chang Liew ◽  
Ajay Pradhan ◽  
Natascha May Thevasagayam ◽  
...  

AbstractHeat shock factors (Hsfs) are transcription factors that regulate response to heat shock and to variety of other environmental and physiological stimuli. Four HSFs (HSF1-4) known in vertebrates till date, perform a wide variety of functions from mediating heat shock response to development and gametogenesis. Here, we describe a new yet conserved member of HSF family, Hsf5, which likely exclusively functions for spermatogenesis. Thehsf5is predominantly expressed in developing testicular tissues, in comparison to wider expression reported for other HSFs. HSF5 loss causes male sterility due to drastically reduced sperm count, and severe abnormalities in remaining few spermatozoa. While hsf5 mutant female did not show any abnormality. We show that Hsf5 is required for progression through meiotic prophase 1 during spermatogenesis. Thehsf5mutants indeed show misregulation of a substantial number of genes regulating cell cycle, DNA-damage repair, apoptosis and cytoskeleton proteins. We also show that Hsf5 physically binds to majority of these differentially expressed genes, suggesting its direct role in regulating the expression of many genes important for spermatogenesis.


Author(s):  
L.Ye. Kozeko ◽  
◽  
E.L. Kordyum ◽  

Mitochondrial heat shock proteins of HSP70 family support protein homeostasis in mitochondria under normal and stress conditions. They provide folding and complex assembly of proteins encoded by mitochondrial genome, as well as import of cytosolic proteins to mitochondria, their folding and protection against aggregation. There are reports about organ-specificity of mitochondrial HSP70 synthesis in plants. However, tissue specificity of their functioning remains incompletely characterized. This problem was studied for mitochondrial AtHSP70-10 in Arabidopsis thaliana seedlings using a transgenic line with uidA signal gene under normal conditions, as well as high temperature and water deficit. Under normal conditions, histochemical GUS-staining revealed the expression of AtHSP70-10 in cotyledon and leaf hydathodes, stipules, central cylinder in root differentiation and mature zones, as well as weak staining in root apex and root-shoot junction zone. RT-PCR analysis of wild-type seedlings exposed to 37°C showed rapid upregulation of AtHSP70-10, which reached the highest level within 2 h. In addition, the gradual development of water deficit for 5 days caused an increase in transcription of this gene, which became more pronounced after 3 days and reached a maximum after 5 days of dehydration. Histochemical analysis showed complete preservation of tissue localization of AtHSP70-10 expression under both abiotic factors. The data obtained indicate the specific functioning of mitochondrial chaperone AtHSP70-10 in certain plant cellular structures.


2016 ◽  
Vol 39 (8) ◽  
pp. 1780-1789 ◽  
Author(s):  
Jiao-ke Zeng ◽  
Xian Li ◽  
Jing Zhang ◽  
Hang Ge ◽  
Xue-ren Yin ◽  
...  

2011 ◽  
Vol 22 (19) ◽  
pp. 3571-3583 ◽  
Author(s):  
Toyohide Shinkawa ◽  
Ke Tan ◽  
Mitsuaki Fujimoto ◽  
Naoki Hayashida ◽  
Kaoru Yamamoto ◽  
...  

Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases.


1991 ◽  
Vol 5 (10) ◽  
pp. 1902-1911 ◽  
Author(s):  
K D Sarge ◽  
V Zimarino ◽  
K Holm ◽  
C Wu ◽  
R I Morimoto

2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Daisuke Ogawa ◽  
Kiyomi Abe ◽  
Akio Miyao ◽  
Mikiko Kojima ◽  
Hitoshi Sakakibara ◽  
...  

2021 ◽  
Author(s):  
Avishek Roy ◽  
Ranjan Tamuli

Abstract Heat shock proteins (Hsps) are molecular chaperones and required for survival of organisms under heat stress conditions. In this study, we studied Hsp80, a member of the Hsp90 family, in Neurospora crassa. The expression of hsp80 was severely reduced in the N. crassa calcineurin B subunit RIP-mutant (cnb-1RIP) strains under the heat shock conditions. Furthermore, the expression levels of cnb-1, hsp60, hsp80, and the calcineurin-regulated transcription factor crz-1 were increased, but expression levels were reduced in the presence of the calcineurin inhibitor FK506 under the heat shock stress in the N. crassa wild type. Therefore, the calcineurin-crz-1 signaling pathway transcriptionally regulates hsp60 and hsp80 under the heat shock stress condition in N. crassa. In addition, the transcript levels of trm-9 and nca-2, a Ca2+ sensor and a Ca2+ ATPase, respectively, were increased under the heat shock stress condition. Moreover, the expression of the hsp80, but not the hsp60, was reduced in the Δtrm-9, Δnca-2, and the Δtrm-9 Δnca-2 double mutants. These results suggested that hsp80, trm-9, and nca-2 play a role in coping the heat shock stress in N. crassa. We found that CRZ-1 binds to 5ʹ-CCTTCACA-3ʹ and 5ʹ-AGCGGAGC-3ʹ 8 bp nucleotide sequences, located about 1075 bp and 679 bp upstream of the ATG start codon, respectively, of hsp80. We also found that CRZ-1 binds to an 8 bp nucleotide sequence 5ʹ-ACCGCGCC-3ʹ, located 234 bp upstream of the ATG start codon of nca-2 under Ca2+ stress condition. Thus, cnb-1, hsp60, hsp80, and crz-1 are involved in the heat shock stress response in N. crassa. Moreover, CRZ-1 upregulates the expressions of hsp80 and nca-2 under the heat shock stress and Ca2+ stress conditions, respectively, in N. crassa.


Sign in / Sign up

Export Citation Format

Share Document